论文标题
牛顿和非牛顿液中液滴扩散动态的通用方面
Universal aspects of droplet spreading dynamics in Newtonian and non-Newtonian Fluids
论文作者
论文摘要
在许多应用中,例如涂料,喷涂或打印等许多应用,液滴的影响很常见;因此,了解液滴在撞击后如何扩散是至关重要的。这种影响可能与各种底物的不同速度发生。流体也可能是非牛顿的,因此具有不同的流变特性。诸如表面粗糙度和润湿性,液滴粘度和流变性以及界面特性等不同特性如何影响液滴的扩散动力学以及撞击后的最终跌落大小是未解决的问题。最近的工作重点是撞击后的最大扩散直径,并使用缩放定律来预测这一点。在本文中,我们表明,通过滴度达到的最大半径,对扩散动力学进行了适当的重新缩放,并且冲击速度可导致独特的单个单一的曲线,从而使直径变化与时间变化。该通用功能形状的有效性是针对具有不同流变特性的不同液体以及具有不同湿润性的底物的。该通用功能与最新模型一致,该模型提出了一组液滴扩散动力学的封闭微分方程。
Droplet impacts are common in many applications such as coating, spraying, or printing; understanding how droplets spread after impact is thus of utmost importance. Such impacts may occur with different velocities on a variety of substrates. The fluids may also be non-Newtonian and thus possess different rheological properties. How the different properties such as surface roughness and wettability, droplet viscosity and rheology as well as interfacial properties affect the spreading dynamics of the droplets and the eventual drop size after impact are unresolved questions. Most recent work focuses on the maximum spreading diameter after impact and uses scaling laws to predict this. In this paper we show that a proper rescaling of the spreading dynamics with the maximum radius attained by the drop, and the impact velocity leads to a unique single and thus universal curve for the variation of diameter versus time. The validity of this universal functional shape is validated for different liquids with different rheological properties as well as substrates with different wettabilities. This universal function agrees with a recent model that proposes a closed set of differential equations for the spreading dynamics of droplets.