论文标题

使用角度覆盖控制策略的果园的3D地图重建

3D Map Reconstruction of an Orchard using an Angle-Aware Covering Control Strategy

论文作者

Mammarella, Martina, Donati, Cesare, Shimizu, Takumi, Suenaga, Masaya, Comba, Lorenzo, Biglia, Alessandro, Uto, Kuniaki, Hatanaka, Takeshi, Gay, Paolo, Dabbene, Fabrizio

论文摘要

在过去的几年中,无人驾驶飞机在精确农业的背景下已成为现实,主要用于监视,巡逻和遥感任务,但也用于3D地图重建。在本文中,我们提出了一种创新的方法,其中利用了无人驾驶飞机的机队在苹果园上执行遥感任务,以重建该田地的3D地图,从而制定了覆盖控制问题,以结合监视目标的位置和观看角度。此外,控制器的目标函数由重要性指数定义,该指数是从该场的多光谱图中计算出来的,该磁场是使用基于卷积神经网络的语义解释方案获得的。然后根据过去的覆盖范围的历史来更新此目标功能,从而使无人机能够采取适应性的自适应动作。拟议的涵盖控制策略的有效性已通过机器人操作系统的模拟进行了验证。

In the last years, unmanned aerial vehicles are becoming a reality in the context of precision agriculture, mainly for monitoring, patrolling and remote sensing tasks, but also for 3D map reconstruction. In this paper, we present an innovative approach where a fleet of unmanned aerial vehicles is exploited to perform remote sensing tasks over an apple orchard for reconstructing a 3D map of the field, formulating the covering control problem to combine the position of a monitoring target and the viewing angle. Moreover, the objective function of the controller is defined by an importance index, which has been computed from a multi-spectral map of the field, obtained by a preliminary flight, using a semantic interpretation scheme based on a convolutional neural network. This objective function is then updated according to the history of the past coverage states, thus allowing the drones to take situation-adaptive actions. The effectiveness of the proposed covering control strategy has been validated through simulations on a Robot Operating System.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源