论文标题
合奏De Petite Somme,结构De Sous-Criticité
Ensembles de petite somme, structure de sous-criticité
论文作者
论文摘要
如果$ a $和$ b $是两组有界的真实组合,则Ruzsa证明了涉及比率$λ(a)/λ(b)$的集中集$ a+b $的精确下限。 De Roton建立了有关该下限的临界集的结构结果。在这里,我们通过在平等案例的社区中建立结果来证明De Roton的工作的概括。
If $A$ and $B$ are two bounded sets of reals, Ruzsa proved a precise lower bound of the measure of the sumset $A+B$ involving the ratio $λ(A)/λ(B)$. De Roton established a structural result about the critical sets of this lower bound. Here, we prove a generalization of de Roton's work by establishing a result in a neighborhood of the case of equality.