论文标题
使用跟踪数据在足球中自动检测
Automatic event detection in football using tracking data
论文作者
论文摘要
近年来,足球事件数据的主要缺点之一是广泛用于分析,它仍然需要手动收集,因此将其可用性限制在减少的比赛中。在这项工作中,我们提出了一种确定性决策的基于决策的算法,以使用跟踪数据自动提取足球事件,该数据由两个步骤组成:(1)一个拥有步骤,该步骤评估了哪个玩家在跟踪数据中的每个帧中拥有的球拥有,并且在时间间隔中没有在播放的时间间隔中播放的不同播放器配置,以便在播放的时间间隔中进行播放,以告知设定的零件零件。 (2)一个事件检测步骤,将第一步计算出的球拥有的变化与足球定律相结合,以确定游戏中的事件和设定。自动生成的事件针对手动注释的事件进行了基准测试,我们表明,在大多数事件类别中,所提出的方法可以在不同的比赛和跟踪数据提供商中实现$+90 \%$检测率。最后,我们演示了如何利用跟踪数据提供的上下文信息来增加自动检测事件的粒度,并展示如何使用所提出的框架来进行足球中的无数数据分析。
One of the main shortcomings of event data in football, which has been extensively used for analytics in the recent years, is that it still requires manual collection, thus limiting its availability to a reduced number of tournaments. In this work, we propose a deterministic decision tree-based algorithm to automatically extract football events using tracking data, which consists of two steps: (1) a possession step that evaluates which player was in possession of the ball at each frame in the tracking data, as well as the distinct player configurations during the time intervals where the ball is not in play to inform set piece detection; (2) an event detection step that combines the changes in ball possession computed in the first step with the laws of football to determine in-game events and set pieces. The automatically generated events are benchmarked against manually annotated events and we show that in most event categories the proposed methodology achieves $+90\%$ detection rate across different tournaments and tracking data providers. Finally, we demonstrate how the contextual information offered by tracking data can be leveraged to increase the granularity of auto-detected events, and exhibit how the proposed framework may be used to conduct a myriad of data analyses in football.