论文标题
通过神经特征分解进行连续预测
Continuous Forecasting via Neural Eigen Decomposition
论文作者
论文摘要
神经微分方程预测随机过程的导数。这允许使用任意时间步长进行不规则预测。但是,表达的时间灵活性通常具有对噪声的高灵敏度。此外,当前方法将测量和控制共同模拟,将概括限制在不同的控制策略中。这些特性严重限制了对医疗问题的适用性,因为高噪声,有限的数据和更改治疗政策,需要可靠的预测。我们介绍了神经特征-SDE算法(NESDE),该算法依赖于具有光谱表示的分段线性动力学建模。 NESDE提供了对表现力水平的控制;将控制与测量结果解耦;和封闭形式的推断中的连续预测。 NESDE被证明可以在合成和实际高噪声医疗问题中提供强大的预测。最后,我们使用学到的动态模型来发布模拟的医学健身房环境。
Neural differential equations predict the derivative of a stochastic process. This allows irregular forecasting with arbitrary time-steps. However, the expressive temporal flexibility often comes with a high sensitivity to noise. In addition, current methods model measurements and control together, limiting generalization to different control policies. These properties severely limit applicability to medical treatment problems, which require reliable forecasting given high noise, limited data and changing treatment policies. We introduce the Neural Eigen-SDE algorithm (NESDE), which relies on piecewise linear dynamics modeling with spectral representation. NESDE provides control over the expressiveness level; decoupling of control from measurements; and closed-form continuous prediction in inference. NESDE is demonstrated to provide robust forecasting in both synthetic and real high-noise medical problems. Finally, we use the learned dynamics models to publish simulated medical gym environments.