论文标题
Tensor Harish-Chandra-Itzykson- Zuber Integral II:检测大量子系统中的纠缠
The tensor Harish-Chandra--Itzykson--Zuber integral II: detecting entanglement in large quantum systems
论文作者
论文摘要
我们考虑了最近引入的Harish-Chandra-Itzykson- Zuber积分与张量的积分,并讨论其渐近行为时,当张紧器的特征大小n被视为大。这项研究要求我们对n外部张量的缩放量进行假设。我们分析了一类两参数的渐近缩放缩放尺度,并揭示了几种非平凡的渐近方案。这项研究与分析多部分量子系统的纠缠特性有关。我们讨论了结果对该领域的潜在应用,特别是在随机局部测量的背景下。
We consider the recently introduced generalization of the Harish-Chandra--Itzykson--Zuber integral to tensors and discuss its asymptotic behavior when the characteristic size N of the tensors is taken to be large. This study requires us to make assumptions on the scaling with N of the external tensors. We analyze a two-parameter class of asymptotic scaling ansätze, uncovering several non-trivial asymptotic regimes. This study is relevant for analyzing the entanglement properties of multipartite quantum systems. We discuss potential applications of our results to this domain, in particular in the context of randomized local measurements.