论文标题
基于机器学习的相对轨道转移用于群体航天器运动计划
Machine Learning Based Relative Orbit Transfer for Swarm Spacecraft Motion Planning
论文作者
论文摘要
在本文中,我们描述了一个基于机器学习的框架,用于航天器群轨迹计划。特别是,我们专注于通过被动相对轨道(Pro)传输飞行的多飞机运动物的协调运动。在避免代理之间发生碰撞的同时,考虑航天器动力学,使航天器群轨迹计划变得困难。可以使用集中式方法来解决此问题,但是计算要求的范围很高,并且随着群体中的代理数量而言,规模较差。结果,集中式算法不适合小型航天器上的实时轨迹规划(例如Cubesats)组成群。在我们的方法中,神经网络用于近似集中方法的解决方案。使用集中式凸优化框架生成必要的培训数据,通过该框架,n = 10号航天器群轨迹计划问题的几个实例得到解决。我们有兴趣回答以下问题,这些问题将深入了解多飞机运动物运动计划问题的深度学习方法的潜在效用:1)神经网络能否产生满足安全限制(例如避免碰撞)和燃料成本较低的可行轨迹? 2)使用N航天器数据训练的神经网络可以用于解决不同大小不同的航天器群的问题吗?
In this paper we describe a machine learning based framework for spacecraft swarm trajectory planning. In particular, we focus on coordinating motions of multi-spacecraft in formation flying through passive relative orbit(PRO) transfers. Accounting for spacecraft dynamics while avoiding collisions between the agents makes spacecraft swarm trajectory planning difficult. Centralized approaches can be used to solve this problem, but are computationally demanding and scale poorly with the number of agents in the swarm. As a result, centralized algorithms are ill-suited for real time trajectory planning on board small spacecraft (e.g. CubeSats) comprising the swarm. In our approach a neural network is used to approximate solutions of a centralized method. The necessary training data is generated using a centralized convex optimization framework through which several instances of the n=10 spacecraft swarm trajectory planning problem are solved. We are interested in answering the following questions which will give insight on the potential utility of deep learning-based approaches to the multi-spacecraft motion planning problem: 1) Can neural networks produce feasible trajectories that satisfy safety constraints (e.g. collision avoidance) and low in fuel cost? 2) Can a neural network trained using n spacecraft data be used to solve problems for spacecraft swarms of differing size?