论文标题

从翻转过程到图形上的动态系统

From flip processes to dynamical systems on graphons

论文作者

Garbe, Frederik, Hladký, Jan, Šileikis, Matas, Skerman, Fiona

论文摘要

我们介绍了一类随机图过程,我们称之为翻转过程。每个这样的过程均由一个规则给出,该规则是$ \ Mathcal {r}:\ Mathcal {h} _k \ rightArrow \ Mathcal \ MathCal {H} _K $,来自所有标签的$ K $ -VERTEX GRAPHS自身($ k $已固定)。该过程以给定的$ n $ vertex图$ g_0 $开始。在每个步骤中,图$ g_i $都是通过抽样$ k $随机顶点$ v_1,\ ldots,v_k $ of $ g_ {i-1} $获得的,并替换了诱导的图形$ f:= g_ {i-1} [v_1,v_1,\ ldots,\ ldots,v_k $ by $ \ by $ \ nathcal {rdots,v_k] $。该类包含几个先前研究的过程,包括erdős--rényi随机图过程和三角删除过程。实际上,我们对翻转过程的定义更为笼统,因为$ \ mathcal {r}(f)$是$ \ nathcal {h} _k $上的概率分布,因此允许随机替换。 给定一个规则$ \ MATHCAL {r} $的翻转过程,我们构建了时间索引轨迹$φ:\ Mathcal {w} _0 \ times [0,\ infty)\ rightArrow \ rightArrow \ Mathcal {w} _0 _0 _0 _0 _0 _0 _0在Graphons的空间中。 We prove that for any $T > 0$ starting with a large finite graph $G_0$ which is close to a graphon $W_0$ in the cut norm, with high probability the flip process will stay in a thin sausage around the trajectory $(Φ(W_0,t))_{t=0}^T$ (after rescaling the time by the square of the order of the graph). 然后从动力学系统的角度研究了这些图形轨迹。除其他主题外,我们研究了这些轨迹相对于时间和初始图形,固定点的存在和稳定性以及收敛速度的连续性特性(每当存在无限的时间限制时)。我们给出一个具有周期性轨迹的翻转过程的示例。

We introduce a class of random graph processes, which we call flip processes. Each such process is given by a rule which is a function $\mathcal{R}:\mathcal{H}_k\rightarrow \mathcal{H}_k$ from all labeled $k$-vertex graphs into itself ($k$ is fixed). The process starts with a given $n$-vertex graph $G_0$. In each step, the graph $G_i$ is obtained by sampling $k$ random vertices $v_1,\ldots,v_k$ of $G_{i-1}$ and replacing the induced graph $F:=G_{i-1}[v_1,\ldots,v_k]$ by $\mathcal{R}(F)$. This class contains several previously studied processes including the Erdős--Rényi random graph process and the triangle removal process. Actually, our definition of flip processes is more general, in that $\mathcal{R}(F)$ is a probability distribution on $\mathcal{H}_k$, thus allowing randomised replacements. Given a flip process with a rule $\mathcal{R}$, we construct time-indexed trajectories $Φ:\mathcal{W}_0\times [0,\infty)\rightarrow\mathcal{W}_0$ in the space of graphons. We prove that for any $T > 0$ starting with a large finite graph $G_0$ which is close to a graphon $W_0$ in the cut norm, with high probability the flip process will stay in a thin sausage around the trajectory $(Φ(W_0,t))_{t=0}^T$ (after rescaling the time by the square of the order of the graph). These graphon trajectories are then studied from the perspective of dynamical systems. Among others topics, we study continuity properties of these trajectories with respect to time and initial graphon, existence and stability of fixed points and speed of convergence (whenever the infinite time limit exists). We give an example of a flip process with a periodic trajectory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源