论文标题

通过稳定的常数平均曲率球的渐近平坦3型体的叶子

Foliations of asymptotically flat 3-manifolds by stable constant mean curvature spheres

论文作者

Eichmair, Michael, Koerber, Thomas

论文摘要

令$(m,g)$为渐近平坦的riemannian dimension $ n \ geq 3 $,具有正质量。我们通过稳定的常数均值曲率球的渐近叶(m,g)$降低了$(m,g)$的渐近叶子的存在,提供了一个简短的证明。此外,我们表明,叶片的质量几何中心与$(m,g)$的汉密尔顿弥撒中心一致。在尺寸$ n = 3 $中,C. nerz先前使用其他方法显示了这些结果。如果$ n = 3 $和$(m,g)$的标量曲率是非负数的,那么我们证明渐近叶叶的叶子是唯一包围$(m,g)$中心的唯一大稳定常数平均曲率球。以前在更限制的衰减假设和S. ma使用其他方法中显示了这一点。

Let $(M,g)$ be an asymptotically flat Riemannian manifold of dimension $n\geq 3$ with positive mass. We give a short proof based on Lyapunov-Schmidt reduction of the existence of an asymptotic foliation of $(M, g)$ by stable constant mean curvature spheres. Moreover, we show that the geometric center of mass of the foliation agrees with the Hamiltonian center of mass of $(M,g)$. In dimension $n = 3$, these results were shown previously by C. Nerz using a different approach. In the case where $n=3$ and the scalar curvature of $(M, g)$ is nonnegative, we prove that the leaves of the asymptotic foliation are the only large stable constant mean curvature spheres that enclose the center of $(M, g)$. This was shown previously under more restrictive decay assumptions and using a different method by S. Ma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源