论文标题

一种基于贝叶斯的深层展开算法,用于单光子激光雷达系统

A Bayesian Based Deep Unrolling Algorithm for Single-Photon Lidar Systems

论文作者

Koo, Jakeoung, Halimi, Abderrahim, McLaughlin, Stephen

论文摘要

在现实世界应用中部署3D单光子激光镜头成像面临多个挑战,包括在高噪声环境中进行成像。已经提出了几种算法来基于统计或基于学习的框架解决这些问题。统计方法提供了有关推断参数的丰富信息,但受假定的模型相关结构的限制,而深度学习方法显示出最先进的性能,但推理保证有限,从而阻止了其在关键应用中的扩展使用。本文将统计的贝叶斯算法展开为一种新的深度学习体系结构,以从单光子激光雷德数据(即算法的迭代步骤转换为神经网络层),以重建可靠的图像重建。由此产生的算法受益于统计和基于学习的框架的优势,从而提供了改进的网络可解释性的最佳估计。与现有的基于学习的解决方案相比,所提出的架构需要减少可训练的参数,对噪声和不施加效果更强大,并提供有关包括不确定性度量在内的估计值的更丰富的信息。与最先进的算法相比,关于合成和实际数据的结果显示了有关推断和计算复杂性质量的竞争结果。

Deploying 3D single-photon Lidar imaging in real world applications faces multiple challenges including imaging in high noise environments. Several algorithms have been proposed to address these issues based on statistical or learning-based frameworks. Statistical methods provide rich information about the inferred parameters but are limited by the assumed model correlation structures, while deep learning methods show state-of-the-art performance but limited inference guarantees, preventing their extended use in critical applications. This paper unrolls a statistical Bayesian algorithm into a new deep learning architecture for robust image reconstruction from single-photon Lidar data, i.e., the algorithm's iterative steps are converted into neural network layers. The resulting algorithm benefits from the advantages of both statistical and learning based frameworks, providing best estimates with improved network interpretability. Compared to existing learning-based solutions, the proposed architecture requires a reduced number of trainable parameters, is more robust to noise and mismodelling effects, and provides richer information about the estimates including uncertainty measures. Results on synthetic and real data show competitive results regarding the quality of the inference and computational complexity when compared to state-of-the-art algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源