论文标题
非本地非线性边界条件扩散方程的数值方案
A numerical scheme for a diffusion equation with nonlocal nonlinear boundary condition
论文作者
论文摘要
在本文中,提出了一种数值方案,以发现具有扩散(M-V-D)的McKendrick-von foerster方程的近似解决方案。使用标准分析来研究该方案的性质的主要困难是由于在M-V-D中的Robin边界条件下存在非线性和非局部项。为了克服这一点,我们基于稳定阈值的概念来使用分析的抽象理论来分析该方案。建立了所提出的数值方案的稳定性和收敛性。
In this article, a numerical scheme to find approximate solutions to the McKendrick-Von Foerster equation with diffusion (M-V-D) is presented. The main difficulty in employing the standard analysis to study the properties of this scheme is due to presence of nonlinear and nonlocal term in the Robin boundary condition in the M-V-D. To overcome this, we use the abstract theory of discretizations based on the notion of stability threshold to analyze the scheme. Stability, and convergence of the proposed numerical scheme are established.