论文标题
创建半径差距而不会损失
Creating the Radius Gap without Mass Loss
论文作者
论文摘要
观察到的系外行星种群具有半径分布的差距,将较小的超级地球($ \ lyssim $ 1.7 Earth Radii)与较大的子纳普($ \ sim $ \ sim $ 1.7---4接地半径)分开。尽管群众损失理论可以解释该半径谷的许多观察到的特征,但很难将它们与轨道时期超过$ \ sim $ 30天的潜在增加的陆地人口调和。我们研究了磁盘演化的气体贫困期在同时再现观察到的半径间隙的位置和长期周期陆地行星的位置的能力。通过流体动力学效应并得出更现实的磁盘温度曲线,更新气体积聚率的分析缩放关系,以计算界限的缩小半径,我们发现单独的后期增压剂能够带出观察到的半径间隙,带有斜坡$ _ {\ rm gap} \ rm gap} \ prop prop prop p prop p^p^$ rm prop p^$ rm gap} \ propto m_ \ star^{0.15} $,用于顶部;和$ r _ {\ rm gap} \ propto p^{ - 0.089} $和$ r _ {\ rm gap} \ propto m_ \ star^{0.22} $,用于底部 - 核心质量分布,以良好的一致性与观察。原始半径间隙的一般形态对于一系列磁盘气体密度和磁盘积聚率是稳定的,后者主要影响大行星的种群($ \ gtrsim $ 3--4 $ r_ \ oplus $)。半径分布中的峰和山谷可能是原始设置的,而后形成质量损失则进一步调节了超球星人群。我们提供了潜在的观察测试,苔丝,柏拉图和罗马太空望远镜可能可能进行。
The observed exoplanet population features a gap in the radius distribution that separates the smaller super-Earths ($\lesssim$1.7 Earth radii) from the larger sub-Neptunes ($\sim$1.7--4 Earth radii). While mass loss theories can explain many of the observed features of this radius valley, it is difficult to reconcile them with potentially rising population of terrestrials beyond orbital periods of $\sim$30 days. We investigate the ability of gas accretion during the gas-poor phase of disk evolution to reproduce both the location of the observed radius gap and the existence of long-period terrestrial planets. Updating the analytic scaling relations of gas accretion rate accounting for the shrinking of the bound radius by hydrodynamic effects and deriving a more realistic disk temperature profile, we find that the late-stage gas accretion alone is able to carve out the observed radius gap, with slopes $R_{\rm gap} \propto P^{-0.096}$ and $R_{\rm gap} \propto M_\star^{0.15}$ for top-heavy; and $R_{\rm gap} \propto P^{-0.089}$ and $R_{\rm gap} \propto M_\star^{0.22}$ for bottom-heavy core mass distributions, in good agreement with observations. The general morphology of the primordial radius gap is stable against a range of disk gas density and disk accretion rate with the latter affecting mostly the population of large planets ($\gtrsim$3--4$R_\oplus$). The peaks and valleys in the radius distribution were likely set in place primordially while post-formation mass loss further tunes the exoplanetary population. We provide potential observational tests that may be possible with TESS, PLATO and Roman Space Telescope.