论文标题

隐藏后门后面:反对生成模型的自我碰撞

Hiding Behind Backdoors: Self-Obfuscation Against Generative Models

论文作者

Datta, Siddhartha, Shadbolt, Nigel

论文摘要

在最近的研究中,已经证明了损害机器学习管道的攻击向量,从扰动到建筑组件。在这项工作的基础上,我们说明了自我碰撞攻击:攻击者针对系统中的预处理模型,并毒化了生成模型的训练集,以使推理期间混淆特定类别。我们的贡献是描述,实施和评估广泛的攻击,以期提高人们对机器学习社区内建筑鲁棒性挑战的认识。

Attack vectors that compromise machine learning pipelines in the physical world have been demonstrated in recent research, from perturbations to architectural components. Building on this work, we illustrate the self-obfuscation attack: attackers target a pre-processing model in the system, and poison the training set of generative models to obfuscate a specific class during inference. Our contribution is to describe, implement and evaluate a generalized attack, in the hope of raising awareness regarding the challenge of architectural robustness within the machine learning community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源