论文标题

形状一致的生成对抗网络,用于多模式医学分割图

Shape-consistent Generative Adversarial Networks for multi-modal Medical segmentation maps

论文作者

Segre, Leo, Hirschorn, Or, Ginzburg, Dvir, Raviv, Dan

论文摘要

最近,跨域的跨域的图像翻译最近引起了人们的兴趣和大幅改进。在医学成像中,有多种成像方式,具有非常不同的特征。我们的目标是使用CT和MRI整个心脏扫描之间的跨模式适应性进行语义分割。我们为极限数据集提供了使用合成的心脏量的分割网络。我们的解决方案基于一个3D跨模式生成对抗网络,可在模式之间共享信息,并使用未配对的数据集生成合成数据。我们的网络利用语义细分来提高发电机形状的一致性,从而在重新训练分割网络时创建更现实的合成量。我们表明,在使用空间增强以改善生成对抗网络时,可以在小数据集上进行改进的细分。这些增强功能提高了发电机功能,从而提高了分段的性能。在使用建议的架构时,仅使用16 CT和16个MRI心血管体积,比其他分割方法显示了改进的结果。

Image translation across domains for unpaired datasets has gained interest and great improvement lately. In medical imaging, there are multiple imaging modalities, with very different characteristics. Our goal is to use cross-modality adaptation between CT and MRI whole cardiac scans for semantic segmentation. We present a segmentation network using synthesised cardiac volumes for extremely limited datasets. Our solution is based on a 3D cross-modality generative adversarial network to share information between modalities and generate synthesized data using unpaired datasets. Our network utilizes semantic segmentation to improve generator shape consistency, thus creating more realistic synthesised volumes to be used when re-training the segmentation network. We show that improved segmentation can be achieved on small datasets when using spatial augmentations to improve a generative adversarial network. These augmentations improve the generator capabilities, thus enhancing the performance of the Segmentor. Using only 16 CT and 16 MRI cardiovascular volumes, improved results are shown over other segmentation methods while using the suggested architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源