论文标题

在基质 - 骨折界面处与无摩擦接触的混合维科机械模型的数值分析

Numerical analysis of a mixed-dimensional poromechanical model with frictionless contact at matrix-fracture interfaces

论文作者

Bonaldi, Francesco, Droniou, Jérôme, Masson, Roland

论文摘要

我们提出了一项完整的数值分析,以考虑单相流以及在基质 - 触发接口处的无摩擦接触以及非线性的孔隙力学耦合,以对断裂的多孔培养基中的耦合流程学模型进行普遍离散。裂缝被描述为平面表面,产生所谓的混合或杂化维模型。对于矩阵,考虑了较小的位移和线性弹性行为。该模型解释了基质 - 裂缝界面处的不连续的流体压力,以覆盖广泛的正常断裂电导率。数值分析是在梯度离散框架中进行的,其中包括大型符合和不合格离散的家庭。作为副产品,收敛结果还产生了连续模型的弱解决方案。提出了2D中的数值实验,以支持获得的结果,并采用杂交有限体积方案,用于流动和二阶有限元素($ \ \ m m iathbb p_2 $),用于机械位移,以及面对面的常数($ \ \ \ \ \ \ m m mathbb p_0 $)的lagrange多级,lagrange多级在lagrange上,代表正常压力,代表正常压力,以剥夺了正常压力。

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源