论文标题

在壁挂湍流中大型模拟建模的深度加固学习

Deep reinforcement learning for large-eddy simulation modeling in wall-bounded turbulence

论文作者

Kim, Junhyuk, Kim, Hyojin, Kim, Jiyeon, Lee, Changhoon

论文摘要

对于许多科学和工程应用来说,用于大涡模拟(LES)的可靠亚网格尺度(SGS)模型非常重要。最近,在监督学习过程中,使用高保真数据(例如直接数值模拟(DNS))对深度学习方法进行了测试。但是,这种数据通常在实践中不可用。仅使用有限的目标统计数据的深入加强学习(DRL)可以是一种替代算法,其中模型的训练和测试是在同一LES环境中进行的。由于其混乱性,动作空间的高维度以及较大的计算成本,湍流建模的DRL仍然具有挑战性。在本研究中,我们提出了一个受到物理限制的DRL框架,该框架可以开发一个深神经网络(DNN)基于湍流通道流量的SGS模型。根据过滤速度的局部梯度对产生SGS应力的DRL模型进行了训练。开发的SGS模型会自动满足反射不变性和壁边界条件,而无需额外的训练过程,因此DRL可以快速找到最佳策略。此外,将奖励,空间和时间相关的探索以及预训练过程的直接积累用于高效和有效的学习。在各种环境中,我们的DRL可能会发现产生粘性的SGS模型,而雷诺(Reynolds)则与过滤的DNS完全一致。通过比较训练有素的模型和常规SGS模型获得的各种统计数据,我们提出了对DRL模型更好性能的可能解释。

The development of a reliable subgrid-scale (SGS) model for large-eddy simulation (LES) is of great importance for many scientific and engineering applications. Recently, deep learning approaches have been tested for this purpose using high-fidelity data such as direct numerical simulation (DNS) in a supervised learning process. However, such data are generally not available in practice. Deep reinforcement learning (DRL) using only limited target statistics can be an alternative algorithm in which the training and testing of the model are conducted in the same LES environment. The DRL of turbulence modeling remains challenging owing to its chaotic nature, high dimensionality of the action space, and large computational cost. In the present study, we propose a physics-constrained DRL framework that can develop a deep neural network (DNN)-based SGS model for the LES of turbulent channel flow. The DRL models that produce the SGS stress were trained based on the local gradient of the filtered velocities. The developed SGS model automatically satisfies the reflectional invariance and wall boundary conditions without an extra training process so that DRL can quickly find the optimal policy. Furthermore, direct accumulation of reward, spatially and temporally correlated exploration, and the pre-training process are applied for the efficient and effective learning. In various environments, our DRL could discover SGS models that produce the viscous and Reynolds stress statistics perfectly consistent with the filtered DNS. By comparing various statistics obtained by the trained models and conventional SGS models, we present a possible interpretation of better performance of the DRL model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源