论文标题

亚块重排的楼梯代码

Sub-Block Rearranged Staircase Codes

论文作者

Qiu, Min, Yuan, Jinhong

论文摘要

我们提出了一个新的一系列空间耦合产品代码,称为子块重排楼梯(SR楼梯)代码。 SR Staircase代码的每个代码块都是通过编码重新排列的代码块和新信息块获得的,其中重新排列涉及子块的分解和换位。可以构建所提出的代码,将每个代码块大小$ 1/q $与传统楼梯代码的$ 1/q $,同时具有相同的速率和组件代码,对于任何正整数$ q $。在这方面,我们可以使用强大的代数组件代码来构建具有类似或相同的代码块大小和速率与具有弱组件代码的楼梯代码的SR阶梯代码。我们通过使用密度演化来表征在迭代有界距离解码(IBDD)下所提出的代码的解码阈值。我们还得出了与楼梯代码相比,它们达到更好的解码阈值的条件。此外,我们通过分析贡献误差模式及其多重性来研究错误地板性能。理论和仿真结果都表明,设计的SR楼梯代码在瀑布和误差地面方面的表现优于楼梯代码,而通过使用大型耦合宽度可以进一步提高性能。

We propose a new family of spatially coupled product codes, called sub-block rearranged staircase (SR-staircase) codes. Each code block of SR-staircase codes is obtained by encoding rearranged preceding code blocks and new information block, where the rearrangement involves sub-blocks decomposition and transposition. The proposed codes can be constructed to have each code block size of $1/q$ to that of the conventional staircase codes while having the same rate and component codes, for any positive integer $q$. In this regard, we can use strong algebraic component codes to construct SR-staircase codes with a similar or the same code block size and rate as staircase codes with weak component codes. We characterize the decoding threshold of the proposed codes under iterative bounded distance decoding (iBDD) by using density evolution. We also derive the conditions under which they achieve a better decoding threshold than that of staircase codes. Further, we investigate the error floor performance by analyzing the contributing error patterns and their multiplicities. Both theoretical and simulation results show that the designed SR-staircase codes outperform staircase codes in terms of waterfall and error floor while the performance can be further improved by using a large coupling width.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源