论文标题
使用普通设备的1000倍更快的相机和机器视觉
1000x Faster Camera and Machine Vision with Ordinary Devices
论文作者
论文摘要
在数码相机中,我们发现了一个主要限制:从胶片摄像机继承的图像和视频形式阻碍了它捕获快速变化的光子世界。在这里,我们提出了vidar,一个位序列阵列,其中每个位表示光子的积累是否已达到阈值,以随时记录和重建场景辐射。通过仅使用消费级CMOS传感器和集成电路,我们开发了比传统摄像机快1,000倍的Vidar相机。通过将Vidar视为生物视觉中的尖峰火车,我们进一步开发了一种基于神经网络的机器视觉系统,该系统结合了机器的速度和生物视觉的机制,实现了高速对象检测和比人类视觉快1,000倍的速度。我们在助理裁判和目标指向系统中演示了Vidar相机和超级视觉系统的实用性。我们的研究有望从根本上彻底改变图像和视频概念及相关行业,包括摄影,电影和视觉媒体,并取消一个新的尖峰神经网络支持的无速度机器视觉时代。
In digital cameras, we find a major limitation: the image and video form inherited from a film camera obstructs it from capturing the rapidly changing photonic world. Here, we present vidar, a bit sequence array where each bit represents whether the accumulation of photons has reached a threshold, to record and reconstruct the scene radiance at any moment. By employing only consumer-level CMOS sensors and integrated circuits, we have developed a vidar camera that is 1,000x faster than conventional cameras. By treating vidar as spike trains in biological vision, we have further developed a spiking neural network-based machine vision system that combines the speed of the machine and the mechanism of biological vision, achieving high-speed object detection and tracking 1,000x faster than human vision. We demonstrate the utility of the vidar camera and the super vision system in an assistant referee and target pointing system. Our study is expected to fundamentally revolutionize the image and video concepts and related industries, including photography, movies, and visual media, and to unseal a new spiking neural network-enabled speed-free machine vision era.