论文标题

具有垂直步骤的广义Motzkin路径的一些统计数据

Some statistics on generalized Motzkin paths with vertical steps

论文作者

Sun, Yidong, Zhao, Di, Shi, Wenle, Wang, Weichen

论文摘要

最近,一些作者考虑了具有各种步骤的晶格路径,包括允许的垂直步骤。在本文中,我们考虑了一种广义的motzkin路径,很简单地称为{\ it G-Motzkin Paths},这是$(0,0)$到$(n,0)$的晶格路径,在$ xoy $ $ - plane的第一个象限中,由up步骤$ \ nathbf {u \ nathbf {u} =(1) -1)$,水平步骤$ \ mathbf {h} =(1,0)$和垂直步骤$ \ mathbf {v} =(0,-1)$。我们主要计算$ \ mathbf {z} $的G-Motzkin长度$ n $的g-Motzkin路径数 - $ \ mathbf {z} $ - 步骤“在G-Motzkin Paths中的给定级别,$ \ Mathbf {Z} \ in \ {\ MathBf {U},\ Mathbf {h},\ MathBf {h},\ Mathbf {V},\ Mathbf {v},\ Mathbf {d}代数方法,根据G-Motzkin路径的结构分解,一些枚举结果与Riordan阵列有关。我们还讨论了统计信息“ $ \ mathbf {z} _1 \ mathbf {z} _2 $ -Steps”在G-Motzkin Paths中的$ \ Mathbf {Z} _1,\ Mathbf {Z} \ Mathbf {V},\ Mathbf {d} \} $,确切的计数公式除外,除$ \ MathBf {Z} _1 _1 \ Mathbf {Z} _2 = \ Mathbf {dd} $由LAGRENGE INVERSION INVERSION FORVERAULA及其生成函数获得。

Recently, several authors have considered lattice paths with various steps, including vertical steps permitted. In this paper, we consider a kind of generalized Motzkin paths, called {\it G-Motzkin paths} for short, that is lattice paths from $(0, 0)$ to $(n, 0)$ in the first quadrant of the $XOY$-plane that consist of up steps $\mathbf{u}=(1, 1)$, down steps $\mathbf{d}=(1, -1)$, horizontal steps $\mathbf{h}=(1, 0)$ and vertical steps $\mathbf{v}=(0, -1)$. We mainly count the number of G-Motzkin paths of length $n$ with given number of $\mathbf{z}$-steps for $\mathbf{z}\in \{\mathbf{u}, \mathbf{h}, \mathbf{v}, \mathbf{d}\}$, and enumerate the statistics "number of $\mathbf{z}$-steps" at given level in G-Motzkin paths for $\mathbf{z}\in \{\mathbf{u}, \mathbf{h}, \mathbf{v}, \mathbf{d}\}$, some explicit formulas and combinatorial identities are given by bijective and algebraic methods, some enumerative results are linked with Riordan arrays according to the structure decompositions of G-Motzkin paths. We also discuss the statistics "number of $\mathbf{z}_1\mathbf{z}_2$-steps" in G-Motzkin paths for $\mathbf{z}_1, \mathbf{z}_2\in \{\mathbf{u}, \mathbf{h}, \mathbf{v}, \mathbf{d}\}$, the exact counting formulas except for $\mathbf{z}_1\mathbf{z}_2=\mathbf{dd}$ are obtained by the Lagrange inversion formula and their generating functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源