论文标题

二次引力中的灯光般的奇异性超曲面

Lightlike singular hypersurfaces in quadratic gravity

论文作者

Berezin, V. A., Ivanova, I. D.

论文摘要

使用最小动作的原理,得出了二次引力的任意类型的单数超表面的运动方程。包含“外部压力”的方程式和表面能量量张量的“外部流动”组件以及Lichnerowicz条件有助于找到超表面本身,而其余的方程则定义了由于Delta函数衍生剂的隐式存在而产生的任意功能。事实证明,对于二次高斯式式术语,双层也不存在薄壳。结果表明,无效的单数超曲面没有“外部压力”。 Lichnerowicz的条件暗示了球形对称的奇异性超曲面的情况下标量曲率的连续性。如果需要Lichnerowicz的条件,这些高度必须是薄的壳。结果表明,对于这种特殊情况,可以完全去除Lichnerowicz条件,因此存在球形对称的无层双层。探索了保形重力中的球形对称无效奇异性超曲面。

Using the principle of least action, the motion equations for a singular hypersurface of arbitrary type in quadratic gravity are derived. Equations containing the "external pressure" and the "external flow" components of the surface energy-momentum tensor together with the Lichnerowicz conditions serve to find the hypersurface itself, while the remaining ones define arbitrary functions that arise due to the implicit presence of the delta function derivative. It turns out that neither double layers nor thin shells exist for the quadratic Gauss-Bonnet term. It is shown that there is no "external pressure" for null singular hypersurfaces. The Lichnerowicz conditions imply the continuity of the scalar curvature in the case of spherically symmetric null singular hypersurfaces. These hypersurfaces must be thin shells if the Lichnerowicz conditions are necessary. It is shown that for this particular case the Lichnerowicz conditions can be completely removed therefore a spherically symmetric null double layer exists. Spherically symmetric null singular hypersurfaces in conformal gravity are explored as application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源