论文标题
最小人口统计学群体公平性
Minimax Demographic Group Fairness in Federated Learning
论文作者
论文摘要
联邦学习是一个越来越受欢迎的范式,使许多实体能够协作学习更好的模型。在这项工作中,我们研究了在联邦学习方案中的最小群体公平性,在培训阶段,不同的参与实体可能只能进入一部分人群群体。我们正式分析了我们提出的群体公平目标与现有联合学习公平标准的不同之处,该标准在参与者而不是人口组中施加了相似的表现。我们提供了一种优化算法 - FEDMINMAX-用于解决所提出的问题,该问题享有集中学习算法的性能保证。我们通过实验将所提出的方法与其他最新方法进行比较,从各种联合学习设置中的群体公平性角度进行比较,这表明我们的方法表现出竞争性或卓越的表现。
Federated learning is an increasingly popular paradigm that enables a large number of entities to collaboratively learn better models. In this work, we study minimax group fairness in federated learning scenarios where different participating entities may only have access to a subset of the population groups during the training phase. We formally analyze how our proposed group fairness objective differs from existing federated learning fairness criteria that impose similar performance across participants instead of demographic groups. We provide an optimization algorithm -- FedMinMax -- for solving the proposed problem that provably enjoys the performance guarantees of centralized learning algorithms. We experimentally compare the proposed approach against other state-of-the-art methods in terms of group fairness in various federated learning setups, showing that our approach exhibits competitive or superior performance.