论文标题
避免使用经典阴影避免贫瘠的高原
Avoiding barren plateaus using classical shadows
论文作者
论文摘要
变异量子算法是在近期设备上实现量子优势的有希望的算法。量子硬件用于实现变分波函数并测量可观察到的物品,而经典计算机用于存储和更新变分参数。然而,表达变异的Ansätze的优化景观由参数空间中的大区域(称为贫瘠的高原)主导,其消失的梯度可防止有效优化。在这项工作中,我们提出了一种一般算法,以避免在初始化和整个优化中避免贫瘠的高原。为此,我们根据局部降低密度矩阵的熵来定义弱贫瘠的高原(WBP)概念。使用经典计算机最近引入了量子状态的阴影层析成像,可以有效地量化WBP的存在。我们证明,避免WBP足以确保初始化中相当大的梯度。此外,我们证明,在熵的指导下降低梯度步长的大小可以在优化过程中避免使用WBP。这为在近期设备上有效贫瘠的无原优化铺平了道路。
Variational quantum algorithms are promising algorithms for achieving quantum advantage on near-term devices. The quantum hardware is used to implement a variational wave function and measure observables, whereas the classical computer is used to store and update the variational parameters. The optimization landscape of expressive variational ansätze is however dominated by large regions in parameter space, known as barren plateaus, with vanishing gradients which prevents efficient optimization. In this work we propose a general algorithm to avoid barren plateaus in the initialization and throughout the optimization. To this end we define a notion of weak barren plateaus (WBP) based on the entropies of local reduced density matrices. The presence of WBPs can be efficiently quantified using recently introduced shadow tomography of the quantum state with a classical computer. We demonstrate that avoidance of WBPs suffices to ensure sizable gradients in the initialization. In addition, we demonstrate that decreasing the gradient step size, guided by the entropies allows to avoid WBPs during the optimization process. This paves the way for efficient barren plateau free optimization on near-term devices.