论文标题

从轶事证据到定量评估方法:一项有关评估可解释AI的系统综述

From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI

论文作者

Nauta, Meike, Trienes, Jan, Pathak, Shreyasi, Nguyen, Elisa, Peters, Michelle, Schmitt, Yasmin, Schlötterer, Jörg, van Keulen, Maurice, Seifert, Christin

论文摘要

可解释的人工智能(XAI)了解高性能黑匣子的普及提出了一个问题,即如何评估机器学习的解释(ML)模型。尽管通常将可解释性和解释性作为主观验证的二进制属性表示,但我们认为这是一个多方面的概念。我们确定了12种概念特性,例如紧凑性和正确性,应评估以全面评估解释的质量。我们所谓的CO-12属性是系统地审查过去7年在主要AI和ML会议上发表的300多篇论文的评估​​实践的分类方案,这些论文介绍了XAI方法。我们发现,三分之一的论文仅通过轶事证据进行评估,而5分之一的论文对用户进行了评估。这项调查还通过列出定量XAI评估方法的广泛概述,有助于采用客观,可量化的评估方法。我们系统的评估方法收集,为研究人员和从业人员提供了具体的工具,以彻底验证,基准和比较新的和现有的XAI方法。 CO-12分类方案和我们确定的评估方法为在模型培训期间提供了定量指标作为优化标准的机会,以同时优化准确性和可解释性。

The rising popularity of explainable artificial intelligence (XAI) to understand high-performing black boxes raised the question of how to evaluate explanations of machine learning (ML) models. While interpretability and explainability are often presented as a subjectively validated binary property, we consider it a multi-faceted concept. We identify 12 conceptual properties, such as Compactness and Correctness, that should be evaluated for comprehensively assessing the quality of an explanation. Our so-called Co-12 properties serve as categorization scheme for systematically reviewing the evaluation practices of more than 300 papers published in the last 7 years at major AI and ML conferences that introduce an XAI method. We find that 1 in 3 papers evaluate exclusively with anecdotal evidence, and 1 in 5 papers evaluate with users. This survey also contributes to the call for objective, quantifiable evaluation methods by presenting an extensive overview of quantitative XAI evaluation methods. Our systematic collection of evaluation methods provides researchers and practitioners with concrete tools to thoroughly validate, benchmark and compare new and existing XAI methods. The Co-12 categorization scheme and our identified evaluation methods open up opportunities to include quantitative metrics as optimization criteria during model training in order to optimize for accuracy and interpretability simultaneously.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源