论文标题

垃圾邮件:结构化隐式参数模型

SPAMs: Structured Implicit Parametric Models

论文作者

Palafox, Pablo, Sarafianos, Nikolaos, Tung, Tony, Dai, Angela

论文摘要

参数3D模型在建模可变形物体(例如人体,面部和手)方面构成了基本作用。但是,这种参数模型的构建需要大量的手动干预和域专业知识。最近,神经隐式3D表示在捕获3D形状几何形状方面表现出很大的表现。我们观察到,可变形的对象运动通常是语义结构化的,因此建议将结构化易位参数模型(垃圾邮件)学习为可变形的对象表示,结构分解非rigid对象运动为基于部分的分离形状和姿势表示,每种运动都由深层隐含功能表示。这可以实现对象运动的结构化表征,部分分解表征了一个较低的空间,我们可以在其中建立粗糙的运动对应关系。特别是,我们可以在测试时利用零件分解,以适应未观察形状的新深度序列,通过在输入观察和我们学到的部分空间之间建立零件对应关系;这也指导了所有部分的形状和姿势之间的强大关节优化,即使在戏剧性的运动序列下也是如此。实验表明,我们的部分感知形状和构成理解会导致重建和跟踪复杂变形对象运动的深度序列的最新性能。我们计划通过https://pablopalafox.github.io/spams向公众发布模型。

Parametric 3D models have formed a fundamental role in modeling deformable objects, such as human bodies, faces, and hands; however, the construction of such parametric models requires significant manual intervention and domain expertise. Recently, neural implicit 3D representations have shown great expressibility in capturing 3D shape geometry. We observe that deformable object motion is often semantically structured, and thus propose to learn Structured-implicit PArametric Models (SPAMs) as a deformable object representation that structurally decomposes non-rigid object motion into part-based disentangled representations of shape and pose, with each being represented by deep implicit functions. This enables a structured characterization of object movement, with part decomposition characterizing a lower-dimensional space in which we can establish coarse motion correspondence. In particular, we can leverage the part decompositions at test time to fit to new depth sequences of unobserved shapes, by establishing part correspondences between the input observation and our learned part spaces; this guides a robust joint optimization between the shape and pose of all parts, even under dramatic motion sequences. Experiments demonstrate that our part-aware shape and pose understanding lead to state-of-the-art performance in reconstruction and tracking of depth sequences of complex deforming object motion. We plan to release models to the public at https://pablopalafox.github.io/spams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源