论文标题
准同质系统的极限周期的唯一性证明
A proof of the uniqueness of the limit cycle of a quasi-homogeneous system
论文作者
论文摘要
答:Gasull在2021年的工作中分享了33个开放性问题的列表。问题3的第二部分是关于准同质系统的极限周期是否$ \ dot {x} = y,\; \ dot {y} = - x^3+αx^2y+y^3 $是唯一的。在本文中,我们通过分析Infinity的杂智性分离物的独特性来给出这个问题的积极答案。
A. Gasull shared a list of 33 open problems in low dimensional dynamical systems in his work in 2021. The second part of Problem 3 is about whether the limit cycle of a quasi-homogeneous system $ \dot{x}=y,\; \dot{y}=-x^3+αx^2y+y^3 $ is unique. In this paper, we give a positive answer to this question by analysing the uniqueness of the heteroclinic separatrix at infinity.