论文标题

天体:通过labelless嵌入启用的分类

CELESTIAL: Classification Enabled via Labelless Embeddings with Self-supervised Telescope Image Analysis Learning

论文作者

Kotha, Suhas, Koul, Anirudh, Ganju, Siddha, Kasam, Meher

论文摘要

遥感中的一个常见问题是场景分类,这是自然危害识别,地理图像检索和环境监测的根本重要任务。该领域的最新发展取决于依赖标签的监督学习技术,这与NASA Gibs中未标记的卫星图像的35粒相对。为了解决这个问题,我们建立了Acelestial-A自制学习管道,以有效利用稀疏标记的卫星图像。该管道成功调整了SIMCLR,这是一种算法,该算法首先了解未标记数据的图像表示,然后在提供的标签上进行微调这些知识。我们的结果表明,天体仅需要有监督方法在实验数据集上达到相同精度所需的标签。第一个无监督的层次可以启用应用程序,例如对NASA WorldView的反向图像搜索(即,在多年的无标记数据中以最小的样本搜索类似的大气现象),第二个监督层可以显着降低昂贵的数据注释的必要性。将来,我们希望我们可以将天体管道推广到其他数据类型,算法和应用程序。

A common class of problems in remote sensing is scene classification, a fundamentally important task for natural hazards identification, geographic image retrieval, and environment monitoring. Recent developments in this field rely label-dependent supervised learning techniques which is antithetical to the 35 petabytes of unlabelled satellite imagery in NASA GIBS. To solve this problem, we establish CELESTIAL-a self-supervised learning pipeline for effectively leveraging sparsely-labeled satellite imagery. This pipeline successfully adapts SimCLR, an algorithm that first learns image representations on unlabelled data and then fine-tunes this knowledge on the provided labels. Our results show CELESTIAL requires only a third of the labels that the supervised method needs to attain the same accuracy on an experimental dataset. The first unsupervised tier can enable applications such as reverse image search for NASA Worldview (i.e. searching similar atmospheric phenomenon over years of unlabelled data with minimal samples) and the second supervised tier can lower the necessity of expensive data annotation significantly. In the future, we hope we can generalize the CELESTIAL pipeline to other data types, algorithms, and applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源