论文标题
自宇宙中午以来的星系,凸起和磁盘的淬灭:一种用于识别天文数据因果关系的机器学习方法
The quenching of galaxies, bulges, and disks since cosmic noon: A machine learning approach for identifying causality in astronomical data
论文作者
论文摘要
我们对整个宇宙历史的星系,凸起和磁盘中星系,凸起和磁盘中恒星形成的淬火分析,从$ z = 2-0 $。我们在低红移时利用SDSS和漫画的观察结果。我们通过高红移的烛台观察到这些数据来补充这些数据。此外,我们将观察结果与Lgalaxies半分析模型的详细预测进行了比较。为了分析数据,我们使用随机森林分类器开发了一种机器学习方法。我们首先证明,该技术在将其应用于各种观察性调查之前,将其从高度复杂和相关的模型数据中提取因果见解非常有效。我们的主要观察结果如下:在这项工作中研究的所有红移中,我们发现凸起质量是淬火的最预测性参数,不包括光度参数集(包括凸起质量,磁盘质量,总恒星质量和$ b/t $结构)。此外,我们还发现凸起质量是分别处理的凸起和磁盘结构中淬火的最预测性参数。因此,固有的星系淬灭必须是由于在宇宙时间内运行的稳定机制造成的,并且相同的淬火机制在凸起和磁盘区域都必须有效。尽管凸起质量在预测淬火方面取得了成功,但我们发现中央速度分散剂甚至更具预测性(在光谱数据集中可用时)。与LGALAXIES模型相比,我们发现所有这些观察结果都可以通过预防性的“射频”活性银河核(AGN)反馈来始终如一地解释。此外,发现许多替代的淬火机制(包括病毒冲击,超新星反馈和形态稳定)与我们的观察结果以及文献中的结果不一致。
We present an analysis of the quenching of star formation in galaxies, bulges, and disks throughout the bulk of cosmic history, from $z=2-0$. We utilise observations from the SDSS and MaNGA at low redshifts. We complement these data with observations from CANDELS at high redshifts. Additionally, we compare the observations to detailed predictions from the LGalaxies semi-analytic model. To analyse the data, we developed a machine learning approach utilising a Random Forest classifier. We first demonstrate that this technique is extremely effective at extracting causal insight from highly complex and inter-correlated model data, before applying it to various observational surveys. Our primary observational results are as follows: At all redshifts studied in this work, we find bulge mass to be the most predictive parameter of quenching, out of the photometric parameter set (incorporating bulge mass, disk mass, total stellar mass, and $B/T$ structure). Moreover, we also find bulge mass to be the most predictive parameter of quenching in both bulge and disk structures, treated separately. Hence, intrinsic galaxy quenching must be due to a stable mechanism operating over cosmic time, and the same quenching mechanism must be effective in both bulge and disk regions. Despite the success of bulge mass in predicting quenching, we find that central velocity dispersion is even more predictive (when available in spectroscopic data sets). In comparison to the LGalaxies model, we find that all of these observational results may be consistently explained through quenching via preventative `radio-mode' active galactic nucleus (AGN) feedback. Furthermore, many alternative quenching mechanisms (including virial shocks, supernova feedback, and morphological stabilisation) are found to be inconsistent with our observational results and those from the literature.