论文标题
来自矢量样家族的费米亚质量层次结构,以及电子和muon异常磁矩的可能解释
Fermion mass hierarchies from vector-like families and possible explanations for the electron and muon anomalous magnetic moments
论文作者
论文摘要
该论文涵盖了SM的一些成功及其局限性。必须扩展SM的局限性,以解释SM无法解决的可观察物,例如中微子的质量,一些异常,DM,DE等。对于最小的扩展,我们使用类似矢量的家庭,类似Sm的标量(加上单线弗拉文)和$ u(1)^\ prime $ symmetry。我的第一项工作中的第一个BSM模型是同时解释电子和MUON异常磁矩,同时保持约束$μ\ rightarroweγ$衰减和中微子三叉戟产生。尤其是,在我们对异常的分析预测中出现了两个质量来源,手性翻转和类似矢量的质量,而手性翻转质量在$ 0 $至$ 200 \ $ 200 \ operatatorNamame {gev} $之间搜索,然后我们之间没有任何值可以同时满足它们之间的异常情况。我的第二项工作中的第二个BSM模型具有相同的动机,以解释这两个异常,但是通过考虑SM的强层结构在第二个BSM模型中,它进一步迈进了一步。在此BSM模型中,SM作为一种有效理论从$ u(1)^\ prime $对称性中自发地破裂。首先在中微子部门研究了这两种异常,它表明中微子的贡献太小而无法解释其实验界限,因此得出的结论是,中微子不能同时解释这两个异常。接下来,我们研究标量贡献,并表明标量贡献可以同时解释同时解释异常。我的第三次工作研究了相同的第二个BSM模型中的不同FCNC,以限制类似向量的费米子的质量范围。
This thesis covers a few successes of the SM and its limitations. The limitations implement that the SM must be expanded to explain the observables which can not be addressed by the SM such as mass of neutrinos, a few of anomalies, DM, DE, etc. In order to extend the SM, we take the model-dependent approach and a minimal extension to the SM. For the minimal extension, we make use of vector-like family, SM-like scalar (plus a singlet flavon), and $U(1)^\prime$ symmetry. A first BSM model in my first work is to explain both the electron and muon anomalous magnetic moments at the same time, while keeping the constraints $μ\rightarrow e γ$ decay and neutrino trident production. Especially, two mass sources, chirality flip and vector-like mass, appear in our analytic prediction for the anomalies and the chirality flip mass between $0$ and $200 \operatorname{GeV}$ is searched and then we show no any value between them can satisfy the anomalies at the same time. A second BSM model in my second work shares the same motivation, to explain both anomalies, however it goes one step further by considering the strong hierarchical structure of the SM into the second BSM model. In this BSM model, the SM appears as an effective theory spontaneously broken from the $U(1)^\prime$ symmetry. Both anomalies are studied in the neutrino sector first and it reveals that the neutrino contributions are too small to explain their experimental bounds, so leading to a conclusion that the neutrinos can not explain both anomalies simultaneously. Next we study the scalar contribution and show that the scalar contributions can explain both anomalies simultaneously. My third work investigate the diverse FCNCs within the same second BSM model to constrain mass range of vector-like fermions.