论文标题
隐藏颜色的数据:通过有条件可逆神经网络安全且无损的深层模拟
Hiding Data in Colors: Secure and Lossless Deep Image Steganography via Conditional Invertible Neural Networks
论文作者
论文摘要
深度图像隐化是一种数据隐藏技术,该技术通过深层神经网络掩盖了数字图像中的数据。但是,现有的深度图像隐志方法仅考虑容器图像的视觉相似性来托管图像,而忽略了容器图像的统计安全性(隐身)。此外,它们通常将数据限制在图像类型中,从而放松无损提取的约束。在本文中,我们以统一的方式解决了上述问题,并提出了深层的图像模拟,可以将带有任意类型的数据嵌入图像中,以确保安全数据隐藏和无损数据揭示。首先,我们将隐藏的数据隐藏为图像着色问题,其中将数据二进制并进一步映射到颜色信息中,以进行灰度尺度主机图像。其次,我们设计了一个条件可逆的神经网络,该网络在指导颜色生成之前使用灰度图像,并以安全的方式执行隐藏数据。最后,为了实现无损数据揭示,我们提出了一个多阶段训练方案,以管理由于隐藏和揭示过程之间的舍入错误而导致的数据丢失。广泛的实验表明,所提出的方法可以通过产生现实主义颜色图像并成功抵抗stemanlysis的检测来执行安全的数据隐藏。此外,在不同情况下,我们可以达到100%揭示准确性,这表明我们在现实世界中隐身的实用性。
Deep image steganography is a data hiding technology that conceal data in digital images via deep neural networks. However, existing deep image steganography methods only consider the visual similarity of container images to host images, and neglect the statistical security (stealthiness) of container images. Besides, they usually hides data limited to image type and thus relax the constraint of lossless extraction. In this paper, we address the above issues in a unified manner, and propose deep image steganography that can embed data with arbitrary types into images for secure data hiding and lossless data revealing. First, we formulate the data hiding as an image colorization problem, in which the data is binarized and further mapped into the color information for a gray-scale host image. Second, we design a conditional invertible neural network which uses gray-scale image as prior to guide the color generation and perform data hiding in a secure way. Finally, to achieve lossless data revealing, we present a multi-stage training scheme to manage the data loss due to rounding errors between hiding and revealing processes. Extensive experiments demonstrate that the proposed method can perform secure data hiding by generating realism color images and successfully resisting the detection of steganalysis. Moreover, we can achieve 100% revealing accuracy in different scenarios, indicating the practical utility of our steganography in the real-world.