论文标题

在无序的Landau-Ginzburg模型中排斥吸引着有吸引力的波动引起的力

Repulsive to Attractive Fluctuation-Induced Forces in Disordered Landau-Ginzburg Model

论文作者

Rodríguez-Camargo, C. D., Saldivar, A., Svaiter, N. F.

论文摘要

描述流体的某些顺序参数的临界波动会在边界之间产生远距离力。在这里,我们讨论了与无序的Landau-Ginzburg模型相关的波动诱导的力量,该模型在$ d $ d $二维的平板几何形状$ \ mathbb r^{d-1} \ times [0,l] $。在模型中,无序场的强度由非热控制参数定义。我们使用分布Zeta功能方法研究了几乎关键的方案,其中淬灭自由能写为分区函数的一系列矩。在高斯近似中,我们表明,在分区函数的每一刻,对于疾病的某些特定强度,与阶参数量的数量相关的非热波动变得长期延长。我们证明,波动引起的力在边界之间引起的力的迹象取决于上述非热控制参数的强度。

Critical fluctuations of some order parameter describing a fluid generates long-range forces between boundaries. Here, we discuss fluctuation-induced forces associated to a disordered Landau-Ginzburg model defined in a $d$-dimensional slab geometry $\mathbb R^{d-1}\times[0,L]$. In the model the strength of the disordered field is defined by a non-thermal control parameter. We study a nearly critical scenario, using the distributional zeta-function method, where the quenched free energy is written as a series of the moments of the partition function. In the Gaussian approximation, we show that, for each moment of the partition function, and for some specific strength of the disorder, the non-thermal fluctuations, associated to an order parameter-like quantity, becomes long-ranged. We demonstrate that the sign of the fluctuation induced force between boundaries, depend in a non-trivial way on the strength of the aforementioned non-thermal control parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源