论文标题

搜索和基于分数的瀑布拍卖优化

Search and Score-based Waterfall Auction Optimization

论文作者

Halbersberg, Dan, Halevi, Matan, Salhov, Moshe

论文摘要

在线广告是许多在线公司的主要收入来源。一种常见的方法是通过瀑布拍卖来销售在线广告,发布者通过该广告使广告网络的连续价格提供。出版商控制瀑布的订单和价格,以最大程度地提高其收入。在这项工作中,我们提出了一种方法,通过在可能的瀑布的空间中明智地搜索并选择导致最高收入的方法来从历史数据中学习瀑布策略。这项工作的贡献是双重的。首先,我们提出了一种新的方法来估计每个用户相对于每个广告网络的估值分布。其次,我们利用评估矩阵来评分我们的候选瀑布,作为在当地社区迭代搜索的过程的一部分。我们的框架确保了瀑布收入在迭代之间的提高最终融合到当地最佳距离之间。与手动专家优化相比,提供了现实世界的演示以表明所提出的方法改善了现实世界瀑布的总收入。最后,代码和数据在这里可用。

Online advertising is a major source of income for many online companies. One common approach is to sell online advertisements via waterfall auctions, through which a publisher makes sequential price offers to ad networks. The publisher controls the order and prices of the waterfall in an attempt to maximize his revenue. In this work, we propose a methodology to learn a waterfall strategy from historical data by wisely searching in the space of possible waterfalls and selecting the one leading to the highest revenues. The contribution of this work is twofold; First, we propose a novel method to estimate the valuation distribution of each user, with respect to each ad network. Second, we utilize the valuation matrix to score our candidate waterfalls as part of a procedure that iteratively searches in local neighborhoods. Our framework guarantees that the waterfall revenue improves between iterations ultimately converging into a local optimum. Real-world demonstrations are provided to show that the proposed method improves the total revenue of real-world waterfalls, as compared to manual expert optimization. Finally, the code and the data are available here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源