论文标题

多尺度流动模式和人类运动的限制

Multiscale mobility patterns and the restriction of human movement

论文作者

Schindler, Dominik J., Clarke, Jonathan, Barahona, Mauricio

论文摘要

从人类流动性的角度来看,Covid-19的大流行构成了一个自然的实验,可以在时空和时间上进行巨大范围。在这里,我们使用在第一个英国锁定之前和期间收集的Facebook运动地图分析了人类移动性的固有多个尺度。首先,我们获得了锁定的英国移动图,并采用多尺度社区检测以无监督的方式提取一组健壮的分区,以不同级别的粗糙层面。如此获得的分区捕获了与坚果区域更好的覆盖范围的固有移动尺度,而坚果区域的覆盖率更好,这是人类流动性和行政部门之间的不匹配。此外,精细分区中的流动社区与英国前往工作区(TTWA)的旅行非常匹配,但也捕获了上下班的行动性模式。我们还研究了锁定下的移动性的演变,并表明移动性首先恢复了锁定前数据中已经发现的精细规模流量社区,然后随着限制的限制,移动性恢复了向更粗糙的流动社区。线性衰减减震器模型很好地捕获了锁定的覆盖范围,这使我们能够在效果强度和锁定冲击的恢复时间方面量化区域差异。

From the perspective of human mobility, the COVID-19 pandemic constituted a natural experiment of enormous reach in space and time. Here, we analyse the inherent multiple scales of human mobility using Facebook Movement Maps collected before and during the first UK lockdown. First, we obtain the pre-lockdown UK mobility graph, and employ multiscale community detection to extract, in an unsupervised manner, a set of robust partitions into flow communities at different levels of coarseness. The partitions so obtained capture intrinsic mobility scales with better coverage than NUTS regions, which suffer from mismatches between human mobility and administrative divisions. Furthermore, the flow communities in the fine scale partition match well the UK Travel to Work Areas (TTWAs) but also capture mobility patterns beyond commuting to work. We also examine the evolution of mobility under lockdown, and show that mobility first reverted towards fine scale flow communities already found in the pre-lockdown data, and then expanded back towards coarser flow communities as restrictions were lifted. The improved coverage induced by lockdown is well captured by a linear decay shock model, which allows us to quantify regional differences both in the strength of the effect and the recovery time from the lockdown shock.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源