论文标题

$ sp(4,\ mathbb {r})$中的Maximal和Borel Anosov表示

Maximal and Borel Anosov representations in $Sp(4,\mathbb{R})$

论文作者

Davalo, Colin

论文摘要

我们证明,表面基团的任何borel anosov表示为$ sp(4,\ mathbb {r})$,具有最大托莱多不变的,必须是hitchin。我们还证明,表面组的表示为$ sp(2n,\ mathbb {r})$,即$ \ {n-1,n \} $ - Anosov是最大的,并且仅当它满足HyperConvexity属性$ H_N $时。

We prove that any Borel Anosov representations of a surface group into $Sp(4,\mathbb{R})$ that has maximal Toledo invariant must be Hitchin. We also prove that a representation of a surface group into $Sp(2n,\mathbb{R})$ that is $\{n-1,n\}$-Anosov is maximal if and only if it satisfies the hyperconvexity property $H_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源