论文标题
社会意识到的机器人技术的持续学习
Federated Continual Learning for Socially Aware Robotics
论文作者
论文摘要
从学习援助到陪伴,社会机器人有望增强日常生活的许多方面。但是,社会机器人没有看到广泛采用,部分原因是(1)他们没有将其行为适应新用户,并且(2)他们没有提供足够的隐私保护。集中的学习(机器人通过在服务器上收集数据来开发技能)通过防止在线学习新体验并需要存储隐私敏感的数据来促进这些限制。在这项工作中,我们提出了一种分散的学习替代方案,以改善社会机器人的隐私和个性化。我们结合了两种机器学习方法,即联合学习和持续学习,以捕获跨机器人分布的交互动力,并在重复的机器人相遇中暂时分布。我们定义了一套应该在分散的机器人学习方案中平衡的标准。我们还开发了一种新的算法 - 弹性转移 - 利用基于重要性的正则化来保留跨机器人之间的相关参数以及与多个人的相互作用。我们表明,分散的学习是在概念验证社会意识的导航领域中集中学习的可行替代方案,并证明了弹性转移如何改善了一些建议的标准。
From learning assistance to companionship, social robots promise to enhance many aspects of daily life. However, social robots have not seen widespread adoption, in part because (1) they do not adapt their behavior to new users, and (2) they do not provide sufficient privacy protections. Centralized learning, whereby robots develop skills by gathering data on a server, contributes to these limitations by preventing online learning of new experiences and requiring storage of privacy-sensitive data. In this work, we propose a decentralized learning alternative that improves the privacy and personalization of social robots. We combine two machine learning approaches, Federated Learning and Continual Learning, to capture interaction dynamics distributed physically across robots and temporally across repeated robot encounters. We define a set of criteria that should be balanced in decentralized robot learning scenarios. We also develop a new algorithm -- Elastic Transfer -- that leverages importance-based regularization to preserve relevant parameters across robots and interactions with multiple humans. We show that decentralized learning is a viable alternative to centralized learning in a proof-of-concept Socially-Aware Navigation domain, and demonstrate how Elastic Transfer improves several of the proposed criteria.