论文标题

d(-1) - 弦理论中的超级电势

D(-1)-Instanton Superpotential In String Theory

论文作者

Kim, Manki

论文摘要

我们研究了d(-1) - 晶体在calabi-yau三倍超曲面的外向上产生的非扰动超势。为了计算D-Instanton超电势,我们研究了关于圆环完整交叉椭圆形的Calabi-yau四倍的F理论的压实。我们采用Sen-limit,但是使用有限的$ g_s,$ in F理论紧凑型,并限制了所有D7-branes都携带的(8)量规组,我们称之为全球sen-limit。在全球sen-limit中,轴 - dilaton在紧凑型歧管中没有变化。我们计算了全球sen-limit中椭圆形的calabi-yau四倍的Picard-fuchs方程,并表明椭圆形四倍的Picard-fuchs方程分为基础的calabi-yau三倍和椭圆纤维。然后,我们证明了Picard-fuchs方程的这种分裂特性意味着全局sen-limit中椭圆形的calabi-yau四倍的四形时期不包含指定抑制的术语$ \ MATHCAL {o}(e^{ - π/g_s})$。通过此结果,我们最终表明,在全球sen-limit中,基础IIB型压实的超电势不会收到d(-1)-instanton的贡献。此结果精确地为$ g_s。$

We study the non-perturbative superpotential generated by D(-1)-branes in type IIB compactifications on orientifolds of Calabi-Yau threefold hypersurfaces. To compute the D-instanton superpotential, we study F-theory compactification on toric complete intersection elliptic Calabi-Yau fourfolds. We take the Sen-limit, but with finite $g_s,$ in F-theory compactification with a restriction that all D7-branes are carrying SO(8) gauge groups, which we call the global Sen-limit. In the global Sen-limit, the axio-dilaton is not varying in the compactification manifold. We compute the Picard-Fuchs equations of elliptic Calabi-Yau fourfolds in the global Sen-limit, and show that the Picard-Fuchs equations of the elliptic fourfolds split into that of the underlying Calabi-Yau threefolds and of the elliptic fiber. We then demonstrate that this splitting property of the Picard-Fuchs equation implies that the fourform period of the elliptic Calabi-Yau fourfolds in the global Sen-limit does not contain exponentially suppressed terms $\mathcal{O}(e^{-π/g_s})$. With this result, we finally show that in the global Sen-limit, the superpotential of the underlying type IIB compactification does not receive D(-1)-instanton contributions. This result is exact in $g_s.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源