论文标题
交互式纳米复合扩散的透气性:非线性双扩散模型
Transmissibility in Interactive Nanocomposite Diffusion: The Nonlinear Double-Diffusion Model
论文作者
论文摘要
模型类比和物理学或化学之间与生物学或流行病学之间的思想交流经常涉及技术间映射技术。材料力学从数学物理学中的这种插值中受益匪浅,在这种插值中,纳米复合材料的盘位变形金属[1,2,3]的位错模式具有高扩散性路径的纳米复合材料,例如脱位和晶界等,传统上是使用范式的walgraef-aef-aef-aifantis(w-aifantis(w-afandif)(w-afiftivity)( [4,5,6,7,8,9]。在这些研究中,长期存在的挑战是扩散率路径之间的固有非线性相关性,因此很难分析它们的相互依赖性。在这里,我们提出了一种新的方法,该方法是从耦合动力学系统的整体平均密度谱和相关统计的封闭形式解决方案中,从数学生物学中使用的技术得出来计算{\ IT基本复制号} $ r_0 $的数量,这是从每个感染中产生的二次感染数量。我们表明,$ R_0 $公式可用于计算扩散率路径之间的相关性,与D-D模型的确切数值解决方案紧密一致。该方法可以通常实施以分析其他反应扩散模型。
Model analogies and exchange of ideas between physics or chemistry with biology or epidemiology have often involved inter-sectoral mapping of techniques. Material mechanics has benefitted hugely from such interpolations from mathematical physics where dislocation patterning of platstically deformed metals [1,2,3] and mass transport in nanocomposite materials with high diffusivity paths such as dislocation and grain boundaries, have been traditionally analyzed using the paradigmatic Walgraef-Aifantis (W-A) double-diffusivity (D-D) model [4,5,6,7,8,9]. A long standing challenge in these studies has been the inherent nonlinear correlation between the diffusivity paths, making it extremely difficult to analyze their interdependence. Here, we present a novel method of approximating a closed form solution of the ensemble averaged density profiles and correlation statistics of coupled dynamical systems, drawing from a technique used in mathematical biology to calculate a quantity called the {\it basic reproduction number} $R_0$, which is the average number of secondary infections generated from every infected. We show that the $R_0$ formulation can be used to calculate the correlation between diffusivity paths, agreeing closely with the exact numerical solution of the D-D model. The method can be generically implemented to analyze other reaction-diffusion models.