论文标题

与各向异性流体的4D黑洞溶液中的准模式

On quasinormal modes in 4D black hole solutions in the model with anisotropic fluid

论文作者

Bolokhov, S. V., Ivashchuk, V. D.

论文摘要

我们考虑了Dehnen等人的四维黑洞解决方案的家族。 (Grav。Cosmol。9:153,Arxiv:Gr-QC/0211049,2003)由自然数量$ q = 1,2,3,\ DOTS $支配,它以各向异性流体和状态方程式出现在模型中径向和横向方向的压力和$ρ> 0 $是密度。这些国家的方程式遵守弱,强大和主导的能量条件。对于$ q = 1 $,解决方案的度量与Reissner-NordströmOne的度量相吻合。概述了解决方案的全球结构,从而产生了Reissner-Nordström或Schwarzschild类型的Carter-Penrose图,分别为奇数$ q = 2k + 1 $甚至$ q = 2k $。计算了对应于BH溶液(重力质量,PPN参数,鹰温度和熵)的某些物理参数。我们获得并分析了艾科尼尔近似中无质量标量场的准模式。对于限制案例$ q = + \ infty $,它们与Schwarzschild解决方案的众所周知的结果相吻合。我们表明,所有$ q \ geq 2 $及其参数值的HOD猜想都遵守霍金温度和阻尼率。

We consider a family of 4-dimensional black hole solutions from Dehnen et al. ( Grav. Cosmol. 9:153, arXiv: gr-qc/0211049, 2003) governed by natural number $q= 1, 2, 3 , \dots$, which appear in the model with anisotropic fluid and the equations of state: $p_r = -ρ(2q-1)^{-1}$, $p_t = - p_r$, where $p_r$ and $p_t$ are pressures in radial and transverse directions, respectively, and $ρ> 0$ is the density. These equations of state obey weak, strong and dominant energy conditions. For $q = 1$ the metric of the solution coincides with that of the Reissner-Nordström one. The global structure of solutions is outlined, giving rise to Carter-Penrose diagram of Reissner-Nordström or Schwarzschild types for odd $q = 2k + 1$ or even $q = 2k$, respectively. Certain physical parameters corresponding to BH solutions (gravitational mass, PPN parameters, Hawking temperature and entropy) are calculated. We obtain and analyse the quasinormal modes for a test massless scalar field in the eikonal approximation. For limiting case $q = + \infty$, they coincide with the well-known results for the Schwarzschild solution. We show that the Hod conjecture which connect the Hawking temperature and the damping rate is obeyed for all $q \geq 2$ and all (allowed) values of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源