论文标题

不确定世界中的路线:适应性,效率和平衡

Routing in an Uncertain World: Adaptivity, Efficiency, and Equilibrium

论文作者

Vu, Dong Quan, Antonakopoulos, Kimon, Mertikopoulos, Panayotis

论文摘要

我们考虑在非原子路由游戏中的流量分配问题,在这种情况下,玩家的成本功能可能会受到随机波动的影响(例如,天气干扰,基础网络中的扰动等)。我们从控制接口的角度来解决这个问题,该控制接口的观点仅根据观察到的成本进行路由建议,并且在没有任何进一步了解系统管理动态的情况下,例如网络的成本函数,影响网络的任何随机事件的分布等。在这种在线设置中,学习方法,基于流行指数algoriblible forequilibrible equiliLiblium for equiliLiblium clemiblium comminge equililibl equilibible fequiliblible clemible fequiliblible clemible fequiliblible comminge equilibible for equilibible for equiliLibliul $ \ MATHCAL {O}({1/\ sqrt {t}})$ rate:已知此速率在随机网络中是最佳的订单,但否则在静态网络中是次优的。在后一种情况下,可以通过使用精细调谐的加速算法来实现$ \ mathcal {o}({1/t^{2}})$平衡收敛速率;另一方面,这些加速的算法在存在持续的随机性的情况下无法完全收敛,因此尚不清楚如何从融合速度方面实现“两全其美”。我们的论文旨在通过提出以下理想属性提出自适应路由算法来填补这一空白:$(i)$它在$ \ Mathcal {o}({1/t^{2}}}} $ \ Mathcal {o}之间无缝插值 分别; $(ii)$它的收敛速度在网络中的路径数中是聚集的; $ {(iii)} $该方法的每卷复杂性和内存要求在网络中的节点和边缘的数量中是线性的。和$ {(iv)} $它不需要任何问题参数的先验知识。

We consider the traffic assignment problem in nonatomic routing games where the players' cost functions may be subject to random fluctuations (e.g., weather disturbances, perturbations in the underlying network, etc.). We tackle this problem from the viewpoint of a control interface that makes routing recommendations based solely on observed costs and without any further knowledge of the system's governing dynamics -- such as the network's cost functions, the distribution of any random events affecting the network, etc. In this online setting, learning methods based on the popular exponential weights algorithm converge to equilibrium at an $\mathcal{O}({1/\sqrt{T}})$ rate: this rate is known to be order-optimal in stochastic networks, but it is otherwise suboptimal in static networks. In the latter case, it is possible to achieve an $\mathcal{O}({1/T^{2}})$ equilibrium convergence rate via the use of finely tuned accelerated algorithms; on the other hand, these accelerated algorithms fail to converge altogether in the presence of persistent randomness, so it is not clear how to achieve the "best of both worlds" in terms of convergence speed. Our paper seeks to fill this gap by proposing an adaptive routing algortihm with the following desirable properties: $(i)$ it seamlessly interpolates between the $\mathcal{O}({1/T^{2}})$ and $\mathcal{O}({1/\sqrt{T}})$ rates for static and stochastic environments respectively; $(ii)$ its convergence speed is polylogarithmic in the number of paths in the network; ${(iii)}$ the method's per-iteration complexity and memory requirements are both linear in the number of nodes and edges in the network; and ${(iv)}$ it does not require any prior knowledge of the problem's parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源