论文标题
有限非平衡统计热力学的基础:外部量
Foundations of a Finite Non-Equilibrium Statistical Thermodynamics: Extrinsic Quantities
论文作者
论文摘要
统计热力学作为一种概念结构非常有价值,它塑造了我们对平衡热力学状态的思考。围绕该理论基础的一系列未解决的问题可能会导致公正的观察者得出结论,统计热力学处于危机状态。确实,关于不可逆性的微观起源的讨论在科学界持续了一百多年。本文考虑了这些问题,同时开始为有限的非平衡系统开发统计热力学。提出了针对基本热力学关系的所有外部变量的定义,这些变量与平衡热力学极限的现有结果一致。相位空间上的概率密度函数被解释为微晶格的主观不确定性,并且对Gibbs熵公式进行了修改,以允许创建熵,而无需引入其他物理或修改相位空间动力学。提出了对混合悖论,吉布斯的悖论,洛斯迈德的悖论和麦克斯韦的恶魔思想实验提出的决议。最后,将基本热力学关系的外在变量评估为扩散理想气体的时间和空间的函数,并且在经典环境中解释时,初始和最终值被证明与预期的平衡值一致。
Statistical thermodynamics is valuable as a conceptual structure that shapes our thinking about equilibrium thermodynamic states. A cloud of unresolved questions surrounding the foundations of the theory could lead an impartial observer to conclude that statistical thermodynamics is in a state of crisis though. Indeed, the discussion about the microscopic origins of irreversibility has continued in the scientific community for more than a hundred years. This paper considers these questions while beginning to develop a statistical thermodynamics for finite non-equilibrium systems. Definitions are proposed for all of the extrinsic variables of the fundamental thermodynamic relation that are consistent with existing results in the equilibrium thermodynamic limit. The probability density function on the phase space is interpreted as a subjective uncertainty about the microstate, and the Gibbs entropy formula is modified to allow for entropy creation without introducing additional physics or modifying the phase space dynamics. Resolutions are proposed to the mixing paradox, Gibbs' paradox, Loschmidt's paradox, and Maxwell's demon thought experiment. Finally, the extrinsic variables of the fundamental thermodynamic relation are evaluated as functions of time and space for a diffusing ideal gas, and the initial and final values are shown to coincide with the expected equilibrium values when interpreted in a classical context.