论文标题
FlexHDR:对柔性HDR成像的建模对齐和暴露不确定性
FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR Imaging
论文作者
论文摘要
高动态范围(HDR)成像在现代数字摄影管道中至关重要,尽管在整个图像上有不同的照明,但仍用于制作具有曝光区域良好区域的高质量照片。这通常是通过在不同暴露量下拍摄的多个低动态范围(LDR)图像来实现的。但是,由于赔偿不良而导致的过度暴露区域和未对准错误导致诸如鬼魂之类的人工制品。在本文中,我们提出了一种新的HDR成像技术,该技术专门模拟了对齐和暴露不确定性,以产生高质量的HDR结果。我们介绍了一种策略,该策略能够使用HDR感知的,不确定性驱动的注意力图共同对齐和评估对齐和暴露的可靠性,从而将框架牢固地合并为单个高质量的HDR图像。此外,我们引入了一种进行性的多阶段图像融合方法,该方法可以以置换不变的方式灵活地合并任何数量的LDR图像。实验结果表明,我们的方法可以产生更好的HDR图像,最高可对最先进的PSNR改进,并以更好的细节,颜色和更少的人工制品来改进和主观改进。
High dynamic range (HDR) imaging is of fundamental importance in modern digital photography pipelines and used to produce a high-quality photograph with well exposed regions despite varying illumination across the image. This is typically achieved by merging multiple low dynamic range (LDR) images taken at different exposures. However, over-exposed regions and misalignment errors due to poorly compensated motion result in artefacts such as ghosting. In this paper, we present a new HDR imaging technique that specifically models alignment and exposure uncertainties to produce high quality HDR results. We introduce a strategy that learns to jointly align and assess the alignment and exposure reliability using an HDR-aware, uncertainty-driven attention map that robustly merges the frames into a single high quality HDR image. Further, we introduce a progressive, multi-stage image fusion approach that can flexibly merge any number of LDR images in a permutation-invariant manner. Experimental results show our method can produce better quality HDR images with up to 1.1dB PSNR improvement to the state-of-the-art, and subjective improvements in terms of better detail, colours, and fewer artefacts.