论文标题

分布式NASH均衡寻求超过时变的定向通信网络

Distributed Nash Equilibrium Seeking over Time-Varying Directed Communication Networks

论文作者

Nguyen, Duong Thuy Anh, Nguyen, Duong Tung, Nedić, Angelia

论文摘要

本文提出了一种分布式算法,以在一类不合作凸的游戏中找到NASH均衡,并具有部分决策信息。我们的方法以及共识动态采用了分布式的投影梯度播放方法,个人代理通过梯度步骤和与邻居的本地信息交流,通过随时间变化的定向通信网络来最大程度地减少其本地成本。解决时变的定向图提出了重大挑战。现有方法通常通过关注静态图或有向图的特定类型或要求使用Perron-Frobenius特征向量扩展的步骤来解决这一问题。相比之下,我们建立了新的结果,该结果为与时变的行 - 体重矩阵相关的混合术语提供了收缩特性。我们的方法根据权重矩阵和图形连接结构的特征明确表示收缩系数,而不是通过先前的研究中的重量矩阵的第二大奇异值隐式表示。既定的结果有助于证明所提出的算法的几何融合并提前收敛分析,以实现时变的定向通信网络中的分布式算法。 NASH-Cournot游戏的数值结果证明了该方法的功效。

This paper proposes a distributed algorithm to find the Nash equilibrium in a class of non-cooperative convex games with partial-decision information. Our method employs a distributed projected gradient play approach alongside consensus dynamics, with individual agents minimizing their local costs through gradient steps and local information exchange with neighbors via a time-varying directed communication network. Addressing time-varying directed graphs presents significant challenges. Existing methods often circumvent this by focusing on static graphs or specific types of directed graphs or by requiring the stepsizes to scale with the Perron-Frobenius eigenvectors. In contrast, we establish novel results that provide a contraction property for the mixing terms associated with time-varying row-stochastic weight matrices. Our approach explicitly expresses the contraction coefficient based on the characteristics of the weight matrices and graph connectivity structures, rather than implicitly through the second-largest singular value of the weight matrix as in prior studies. The established results facilitate proving geometric convergence of the proposed algorithm and advance convergence analysis for distributed algorithms in time-varying directed communication networks. Numerical results on a Nash-Cournot game demonstrate the efficacy of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源