论文标题

SASA:基于点的3D对象检测的语义上的设置抽象

SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection

论文作者

Chen, Chen, Chen, Zhe, Zhang, Jing, Tao, Dacheng

论文摘要

尽管证明基于点的网络对于3D点云建模是准确的,但它们仍在3D检测中落后于基于体素的竞争对手。我们观察到,用于下采样点的盛行的集合抽象设计可能会保持过多的不重要的背景信息,这些信息可能会影响特征学习以检测对象。为了解决这个问题,我们提出了一种新颖的集合抽象方法,名为语义激烈的集合抽象(SASA)。从技术上讲,我们首先添加二进制分割模块作为侧输出,以帮助识别前景点。根据估计的点的前景得分,我们提出了一种语义引导点采样算法,以帮助在下采样过程中保留更重要的前景点。在实践中,SASA表明可以有效地识别与前景对象相关的有价值点并改善基于点的3D检测的功能学习。此外,它是一个易于插入的模块,能够增强各种基于点的检测器,包括单阶段和两个阶段。对流行的Kitti和Nuscenes数据集进行的广泛实验验证了SASA的优势,基于点的检测模型可以达到与基于先进的Voxel方法相当的性能。

Although point-based networks are demonstrated to be accurate for 3D point cloud modeling, they are still falling behind their voxel-based competitors in 3D detection. We observe that the prevailing set abstraction design for down-sampling points may maintain too much unimportant background information that can affect feature learning for detecting objects. To tackle this issue, we propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA). Technically, we first add a binary segmentation module as the side output to help identify foreground points. Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling. In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection. Additionally, it is an easy-to-plug-in module and able to boost various point-based detectors, including single-stage and two-stage ones. Extensive experiments on the popular KITTI and nuScenes datasets validate the superiority of SASA, lifting point-based detection models to reach comparable performance to state-of-the-art voxel-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源