论文标题
实现基于对称性的现实对称性的完成
Towards realistic symmetry-based completion of previously unseen point clouds
论文作者
论文摘要
3D扫描是一个复杂的多阶段过程,它会生成一个通常包含损坏的对象的点云,该对象由于阻塞,反射,阴影,扫描仪运动,对象表面的特定特性,不完美的重建算法等。点云完成量是专门设计用于在对象中填充对象缺失的零件并获得其高素质3D表示的。现有的完成方法在学术数据集上表现良好,具有预定义的对象类和非常具体的缺陷类型;但是,它们的性能在现实世界中大幅下降,并在以前看不见的对象类中进一步降低。 我们提出了一个新颖的框架,该框架在对称对象上表现良好,在人造环境中无处不在。与基于学习的方法不同,所提出的框架不需要培训数据,并且能够使用例如,例如使用例如,例如,使用例如,例如,使用例如,例如,使用例如。 Kinect,飞行时间或结构化的轻扫描仪。通过彻底的实验,我们证明了所提出的框架可以在现实世界的客户扫描的点完成云完成方面实现最先进的效率。我们在两种类型的数据集上基准了框架性能:正确增强了现有的学术数据集和各种对象的实际3D扫描。
3D scanning is a complex multistage process that generates a point cloud of an object typically containing damaged parts due to occlusions, reflections, shadows, scanner motion, specific properties of the object surface, imperfect reconstruction algorithms, etc. Point cloud completion is specifically designed to fill in the missing parts of the object and obtain its high-quality 3D representation. The existing completion approaches perform well on the academic datasets with a predefined set of object classes and very specific types of defects; however, their performance drops significantly in the real-world settings and degrades even further on previously unseen object classes. We propose a novel framework that performs well on symmetric objects, which are ubiquitous in man-made environments. Unlike learning-based approaches, the proposed framework does not require training data and is capable of completing non-critical damages occurring in customer 3D scanning process using e.g. Kinect, time-of-flight, or structured light scanners. With thorough experiments, we demonstrate that the proposed framework achieves state-of-the-art efficiency in point cloud completion of real-world customer scans. We benchmark the framework performance on two types of datasets: properly augmented existing academic dataset and the actual 3D scans of various objects.