论文标题
多人被动无线网络室内定位,具有智能反射表面
Multi-Person Passive WiFi Indoor Localization with Intelligent Reflecting Surface
论文作者
论文摘要
过去几年目睹了对通过商品WiFi设备实现被动人类本地化的研究兴趣的日益增加。但是,由于WiFi信号的基本有限的空间分辨率,使用现有商品WiFi设备进行准确的定位仍然非常困难。为了解决这个问题,在本文中,我们建议利用由大量可控制的反射元素组成的智能反射表面(IRS)提供的自由度,以调节WiFi信号的空间分布,从而破坏WIFI信号的空间分辨率限制以实现准确的本地化。具体而言,在单人方案中,我们得出了封闭形式的解决方案,以最佳控制IRS元素的相移。在多人场景中,我们提出了一种侧骑齿轮取消算法来消除近乎婚姻的效果,以以迭代方式实现多个人的准确定位。广泛的仿真结果表明,如果没有对现有的WiFi基础架构进行任何更改,则提出的框架可以在多径干扰和随机噪声下以次级精度被动地定位多个移动的人。
The past years have witnessed increasing research interest in achieving passive human localization with commodity WiFi devices. However, due to the fundamental limited spatial resolution of WiFi signals, it is still very difficult to achieve accurate localization with existing commodity WiFi devices. To tackle this problem, in this paper, we propose to exploit the degree of freedom provided by the Intelligent Reflecting Surface (IRS), which is composed of a large number of controllable reflective elements, to modulate the spatial distribution of WiFi signals and thus break down the spatial resolution limitation of WiFi signals to achieve accurate localization. Specifically, in the single-person scenario, we derive the closed-form solution to optimally control the phase shift of the IRS elements. In the multi-person scenario, we propose a Side-lobe Cancellation Algorithm to eliminate the near-far effect to achieve accurate localization of multiple persons in an iterative manner. Extensive simulation results demonstrate that without any change to the existing WiFi infrastructure, the proposed framework can locate multiple moving persons passively with sub-centimeter accuracy under multipath interference and random noise.