论文标题
制造低损坏的准单个模式PPLN波导及其在模块化宽带高级挤压器上的应用
Fabrication of low-loss quasi-single-mode PPLN waveguide and its application to a modularized broadband high-level squeezer
论文作者
论文摘要
连续波(CW)宽带高级光学正交挤压器对于在时间域 - 多头连续可变的光簇状态上的高速大规模耐断层量子计算至关重要。可以使用波导光学参数放大器(OPA)获得CW THZ带宽挤压光;然而,由于挤压水平的降解水平降解,由于其由结构性扰动和泵诱导的现象造成的光损失,因此挤压水平不足以应用于耐断层的量子计算。在这里,通过使用机械抛光过程,我们制造了一个低损耗的准单个模式,定期固定的Linbo3(PPLN)波导,该波导显示了7%的光学传播损失,波导长度为45 mm。使用波导,我们组装了一个低损坏的纤维小尾巴尾巴模块,总插入损失为21%。由于其在LITAO3底物上的直接粘结核心,即使在数百毫瓦泵送的情况下,波导也不会显示泵引起的光损失。此外,准单个模式结构禁止激发高阶空间模式,并使我们能够获得更大的挤压水平。即使包括模块化的光学耦合损失,我们也会在完全纤维闭合的光学系统中观察到从直流分量到6.0-THZ边带的6.3 dB挤压光。通过排除由于模块化和检测的不完美而导致的损失,估计PPLN波导输出处的挤压水平估计超过10 dB。我们的波导挤压器是高速大规模耐故障量子计算的有前途的量子光源。
A continuous-wave (CW) broadband high-level optical quadrature squeezer is essential for high-speed large-scale fault-tolerant quantum computing on a time-domain-multiplexed continuous-variable optical cluster state. CW THz-bandwidth squeezed light can be obtained with a waveguide optical parametric amplifier (OPA); however, the squeezing level have been insufficient for applications of fault-tolerant quantum computation because of degradation of the squeezing level due to their optical losses caused by the structural perturbation and pump-induced phenomena. Here, by using mechanical polishing processes, we fabricated a low-loss quasi-single-mode periodically-poled LiNbO3 (PPLN) waveguide, which shows 7% optical propagation loss with a waveguide length of 45 mm. Using the waveguide, we assembled a low-loss fiber-pigtailed OPA module with a total insertion loss of 21%. Thanks to its directly bonded core on a LiTaO3 substrate, the waveguide does not show pump-induced optical loss even under a condition of hundreds of milliwatts pumping. Furthermore, the quasi-single-mode structure prohibits excitation of higher-order spatial modes, and enables us to obtain larger squeezing level. Even with including optical coupling loss of the modularization, we observe 6.3-dB squeezed light from the DC component up to a 6.0-THz sideband in a fully fiber-closed optical system. By excluding the losses due to imperfections of the modularization and detection, the squeezing level at the output of the PPLN waveguide is estimated to be over 10 dB. Our waveguide squeezer is a promising quantum light source for high-speed large-scale fault-tolerant quantum computing.