论文标题
DeepvisualInsight:深层分类训练时空因果关系的时间旅行可视化
DeepVisualInsight: Time-Travelling Visualization for Spatio-Temporal Causality of Deep Classification Training
论文作者
论文摘要
了解在培训过程中如何形成深度学习模型的预测对于改善模型性能和修复模型缺陷至关重要,尤其是当我们需要研究非平凡的培训策略,例如主动学习,并跟踪意外培训结果的根本原因,例如性能变性。 在这项工作中,我们提出了一个时间旅行的视觉解决方案DeepVisualInsight(DVI),旨在在训练深度学习图像分类器的同时表现出时空因果关系。时空因果关系证明了梯度降低算法和各种训练数据采样技术如何影响和重塑连续时期内学到的输入表示的布局以及分类边界的布局。这种因果关系使我们能够观察和分析可见的低维空间中的整个学习过程。从技术上讲,我们提出了四个空间和时间属性,并设计了我们的可视化解决方案以满足它们。当逆 - )在可见的低维和无形的高维空间之间投射输入样品时,这些属性保留了最重要的信息,以进行因果分析。我们的广泛实验表明,与基线方法相比,我们达到了有关空间/时间特性和可视化效率的最佳可视化性能。此外,我们的案例研究表明,我们的视觉解决方案可以很好地反映各种培训场景的特征,显示DVI作为分析深度学习训练过程的调试工具的良好潜力。
Understanding how the predictions of deep learning models are formed during the training process is crucial to improve model performance and fix model defects, especially when we need to investigate nontrivial training strategies such as active learning, and track the root cause of unexpected training results such as performance degeneration. In this work, we propose a time-travelling visual solution DeepVisualInsight (DVI), aiming to manifest the spatio-temporal causality while training a deep learning image classifier. The spatio-temporal causality demonstrates how the gradient-descent algorithm and various training data sampling techniques can influence and reshape the layout of learnt input representation and the classification boundaries in consecutive epochs. Such causality allows us to observe and analyze the whole learning process in the visible low dimensional space. Technically, we propose four spatial and temporal properties and design our visualization solution to satisfy them. These properties preserve the most important information when inverse-)projecting input samples between the visible low-dimensional and the invisible high-dimensional space, for causal analyses. Our extensive experiments show that, comparing to baseline approaches, we achieve the best visualization performance regarding the spatial/temporal properties and visualization efficiency. Moreover, our case study shows that our visual solution can well reflect the characteristics of various training scenarios, showing good potential of DVI as a debugging tool for analyzing deep learning training processes.