论文标题

使用时间反转的量子分配

Qubit assignment using time reversal

论文作者

Peters, Evan, Shyamsundar, Prasanth, Li, Andy C. Y., Perdue, Gabriel

论文摘要

随着噪声量子计算机上可用的量子台数量的增长,有必要有效地选择一个物理Qubits的子集以在量子计算中使用。对于任何给定的量子程序和设备,有很多方法可以分配物理量子量以执行程序,并且由于跨量子位质量的变化和纠缠单个设备上的操作,分配的性能会有所不同。使用Fidelity估计评估每个分配的性能会引入重要的实验开销,并且对于许多应用程序来说都是不可行的,而依靠标准设备基准则提供了有关任何特定程序性能的不完整信息。此外,可能的任务数量在设备上和程序中的Qubits数量中增长,激发了启发式优化技术的使用。我们使用基于Loschmidt Echo的成本函数的模拟退火来解决此问题,该诊断可以衡量量子过程的可逆性。我们通过证明最佳的量子分配与基于弱误差限制的状态保真度的最佳量子分配相吻合,为这种选择的成本函数提供了理论理由,并且我们使用在Google超导量Qubit设备上执行的诊断来提供实验性理由。然后,我们使用嘈杂设备的经典模拟以及在量子处理器上执行的优化实验来建立模拟退火进行量子分配的性能。我们的结果表明,Loschmidt回声和模拟退火的使用提供了一种可扩展且灵活的方法,可在近期硬件上优化值分配。

As the number of qubits available on noisy quantum computers grows, it will become necessary to efficiently select a subset of physical qubits to use in a quantum computation. For any given quantum program and device there are many ways to assign physical qubits for execution of the program, and assignments will differ in performance due to the variability in quality across qubits and entangling operations on a single device. Evaluating the performance of each assignment using fidelity estimation introduces significant experimental overhead and will be infeasible for many applications, while relying on standard device benchmarks provides incomplete information about the performance of any specific program. Furthermore, the number of possible assignments grows combinatorially in the number of qubits on the device and in the program, motivating the use of heuristic optimization techniques. We approach this problem using simulated annealing with a cost function based on the Loschmidt Echo, a diagnostic that measures the reversibility of a quantum process. We provide theoretical justification for this choice of cost function by demonstrating that the optimal qubit assignment coincides with the optimal qubit assignment based on state fidelity in the weak error limit, and we provide experimental justification using diagnostics performed on Google's superconducting qubit devices. We then establish the performance of simulated annealing for qubit assignment using classical simulations of noisy devices as well as optimization experiments performed on a quantum processor. Our results demonstrate that the use of Loschmidt Echoes and simulated annealing provides a scalable and flexible approach to optimizing qubit assignment on near-term hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源