论文标题
由最佳访问问题激励的网络上的时间依赖的切换均值游戏
A time-dependent switching mean-field game on networks motivated by optimal visiting problems
论文作者
论文摘要
在一个最佳访问问题的激励下,我们在网络上研究了一个切换的平均场游戏,在该网络上,决策和切换的时间变量都可以分别用于代理商,分别是担忧的瞬间决定和瞬间执行开关的情况。网络节点之间的每个切换都表示字符串$ p =(p_1,\ ldots,p_n)$的一个组成部分的$ 0 $的切换,该$在最佳的访问解释中,提供了有关访问的目标的信息,是$ i = 1 = 1,\ ldots,n $。目的是在最后一次到达最终的字符串$(1,\ ldots,1)$,根据节点上的拥塞,最小化切换成本也最小化。我们证明存在近似$ \ varepsilon $ -MEAN-MEAN-FIELD平衡的适当定义,然后在$ \ Varepsilon $转到0时将段落置于极限。
Motivated by an optimal visiting problem, we study a switching mean-field game on a network, where both a decisional and a switching time-variable is at disposal of the agents for what concerns, respectively, the instant to decide and the instant to perform the switch. Every switch between the nodes of the network represents a switch from $0$ to $1$ of one component of the string $p = (p_1,\ldots, p_n)$ which, in the optimal visiting interpretation, gives information on the visited targets, being the targets labeled by $i=1,\ldots, n$. The goal is to reach the final string $(1, \ldots, 1)$ in the final time $T$, minimizing a switching cost also depending on the congestion on the nodes. We prove the existence of a suitable definition of an approximated $\varepsilon$-mean-field equilibrium and then address the passage to the limit when $\varepsilon$ goes to 0.