论文标题

运动学和流利度在对抗性合成数据生成中的效果,用于使用RF传感器识别ASL识别

Effect of Kinematics and Fluency in Adversarial Synthetic Data Generation for ASL Recognition with RF Sensors

论文作者

Rahman, M. M., Malaia, E., Gurbuz, A. C., Griffin, D. J., Gurbuz, C. Crawfordand S. Z.

论文摘要

最近,已提出了RF传感器作为手语处理技术的新方式。它们是非接触的,在黑暗中有效,并通过剥削微型多普勒效应获得了签名运动学的直接测量。首先,这项工作提供了对签名的运动学特性的深入比较检查,这是由RF传感器用于Fluent ASL用户和听力模仿签名者的测量。其次,由于使用深度学习的ASL识别技术需要大量的培训数据,因此这项工作研究了签署运动学和学科流利性对对抗性学习技术的效果。提出了两种不同的合成训练数据生成方法:1)对抗结构域的适应性,以最大程度地减少模仿签名和流利的签名数据之间的差异,以及2)运动学上受到的生成对抗网络,以准确合成RF签名。结果表明,模仿签名和流利的签名之间的运动学差异非常重要,以至于直接从流利的RF签名者合成的数据训练比适应模仿签名(88%的前5位准确性)所产生的数据具有更高的性能(93%的前5位准确性),而在分类100 ASL签名时,具有更高的性能(88%的前5位准确性)。

RF sensors have been recently proposed as a new modality for sign language processing technology. They are non-contact, effective in the dark, and acquire a direct measurement of signing kinematic via exploitation of the micro-Doppler effect. First, this work provides an in depth, comparative examination of the kinematic properties of signing as measured by RF sensors for both fluent ASL users and hearing imitation signers. Second, as ASL recognition techniques utilizing deep learning requires a large amount of training data, this work examines the effect of signing kinematics and subject fluency on adversarial learning techniques for data synthesis. Two different approaches for the synthetic training data generation are proposed: 1) adversarial domain adaptation to minimize the differences between imitation signing and fluent signing data, and 2) kinematically-constrained generative adversarial networks for accurate synthesis of RF signing signatures. The results show that the kinematic discrepancies between imitation signing and fluent signing are so significant that training on data directly synthesized from fluent RF signers offers greater performance (93% top-5 accuracy) than that produced by adaptation of imitation signing (88% top-5 accuracy) when classifying 100 ASL signs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源