论文标题
使用深度学习预测未来的天文事件
Predicting future astronomical events using deep learning
论文作者
论文摘要
为了寻求智能决策机,做出合理预测的能力是其智能的核心支柱。一个预测算法的核心思想是了解理事规则,并根据相同的管理法律做出合理且适当的预测。将研究扩展到天体物理现象使该模型的测试能力使该模型必须理解各种参数,这些参数可以通过应用合理的定律来理解事件的动力学并了解空间和时间的演变。这项工作提出了一个深度学习模型,以预测具有空间和时间连贯性的合理未来事件。我们已经在两个广泛的类别上训练了SA,SB,S0和SD Galaxy合并的演变以及重力透镜的演变,其前景星系的红移较高,其中有1500万美元_ {\ odot} $。我们扩展了对任何预测算法的绩效指标的直接度量的扩展。因此,我们引入了一种新颖的指标,正确性因子(CF),该因子直接输出了预测的准确性。
In a quest towards an intelligent decision-making machine, the ability to make plausible predictions is the central pillar of its intelligence. A predicting algorithm's central idea is to understand the governing physical rules and make plausible and apt predictions based on the same governing laws. Extending the study towards the astrophysical phenomenon puts the model's ability to test since the model has to understand various parameters that govern the dynamics of the event and understand the spatial and temporal evolution by applying the plausible laws. This work presents a deep learning model to predict plausible future events that maintain spatial and temporal coherence. We have trained over two broad classes, the evolution of Sa, Sb, S0, and Sd galaxy mergers and evolution of gravitational lenses with a higher redshift of the foreground galaxy having $15M_{\odot}$. We extended our work towards developing a direct measure of the performance metric for any prediction algorithm. We thereby introduce a novel metric, Correctness Factor (CF), which directly outputs how accurate a prediction is.